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Foreword

by Ian Stewart

I know when I first came across the Tower of Hanoi because I still have a copy
of the book that I found it in: Riddles in Mathematics by Eugene P. Northrop,
first published in 1944. My copy, bought in 1960 when I was fourteen years old,
was a Penguin reprint. I devoured the book, and copied the ideas that especially
intrigued me into a notebook, alongside other mathematical oddities. About a
hundred pages further into Northrop’s book I found another mathematical oddity:
Wacław Sierpiński’s example of a curve that crosses itself at every point. That,
too, went into the notebook.

It took nearly thirty years for me to become aware that these two curious
structures are intimately related, and another year to discover that several others
had already spotted the connection. At the time, I was writing the monthly column
on mathematical recreations for Scientific American, following in the footsteps of
the inimitable Martin Gardner. In fact, I was the fourth person to write the column.
Gardner had featured the Tower of Hanoi, of course; for instance, it appears in his
book Mathematical Puzzles and Diversions.

Seeking a topic for the column, I decided to revisit an old favourite, and
started rethinking what I knew about the Tower of Hanoi. By then I was aware
that the mathematical essence of many puzzles of that general kind—rearranging
objects according to fixed rules—can often be understood using the state diagram.
This is a network whose nodes represent possible states of the puzzle and whose
edges correspond to permissible moves. I wondered what the state diagram of the
Tower of Hanoi looked like. I probably should have thought about the structure
of the puzzle, which is recursive. To solve it, forget the bottom disc, move the
remaining ones to an empty peg (the same puzzle with one disc fewer), move the
bottom disc, and put the rest back on top. So the solution for, say, five discs
reduces to that for four, which in turn reduces to that for three, then two, then
one, then zero. But with no discs at all, the puzzle is trivial.
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Instead of thinking, I wrote down all possible states for the Tower of Hanoi
with three discs, listed the legal moves, and drew the diagram. It was a bit messy,
but after some rearrangement it suddenly took on an elegant shape. In fact, it
looked remarkably like one of the stages in the construction of Sierpiński’s curve.
This couldn’t possibly be coincidence, and once I’d noticed this remarkable resem-
blance, it was then straightforward to work out where it came from: the recursive
structure of the puzzle.

Several other people had already noticed this fact independently. But shortly
after my rediscovery I was in Kyoto at the International Congress of Mathemati-
cians. Andreas Hinz introduced himself and told me that he had used the con-
nection with the Tower of Hanoi to calculate the average distance between any
two points of Sierpiński’s curve. It is precisely 466/885 of the diameter. This is
an extraordinary result—a rational number, but a fairly complicated one, and far
from obvious.

This wonderful calculation is just one of the innumerable treasures in this
fascinating book. It starts with the best account I have ever read of the history
of the puzzle and its intriguing relatives. It investigates the mathematics of the
puzzle and discusses a number of variations on the Tower of Hanoi theme. And
to drive home how even the simplest of mathematical concepts can propel us into
deep waters, it ends with a list of currently unsolved problems. The authors have
done an amazing job, and the world of recreational mathematics has a brilliant
new jewel in its crown.
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The British mathematician Ian Stewart pointed out in [307, p. 89] that “Mathemat-
ics intrigues people for at least three different reasons: because it is fun, because it
is beautiful, or because it is useful.” Careful as mathematicians are, he wrote “at
least”, and we would like to add (at least) one other feature, namely “surprising”.
The Tower of Hanoi (TH) puzzle is a microcosmos of mathematics. It appears in
different forms as a recreational game, thus fulfilling the fun aspect; it shows rela-
tions to Indian verses and Italian mosaics via its beautiful pictorial representation
as an esthetic graph, it has found practical applications in psychological tests and
its theory is linked with technical codes and phenomena in physics.

The authors are in particular amazed by numerous popular and professional
(mathematical) books that display the puzzle on their covers. However, most of
these books discuss only well-established basic results on the TH with incomplete
arguments. On the other hand, in the last decades the TH became an object of
numerous—some of them quite deep—investigations in mathematics, computer
science, and neuropsychology, to mention just central scientific fields of interest.
The authors have acted frequently as reviewers for submitted manuscripts on
topics related to the TH and noted a lack of awareness of existing literature and
a jumble of notation—we are tempted to talk about a Tower of Babel! We hope
that this book can serve as a base for future research using a somewhat unified
language.

More serious were the errors or mathematical myths appearing in manuscripts
and even published papers (which did not go through our hands). Some “obvious
assumptions” turned out to be questionable or simply wrong. Here is where many
mathematical surprises will show up. Also astonishing are examples of how the
mathematical model of a difficult puzzle, like the Chinese rings, can turn its so-
lution into a triviality. A central theme of our book, however, is the meanwhile
notorious Frame-Stewart conjecture, a claim of optimality of a certain solution
strategy for what has been called The Reve’s puzzle. Despite many attempts and
even allegations of proofs, this has been an open problem for more than 70 years.

Apart from describing the state of the art of its mathematical theory and
applications, we will also present the historical development of the TH from its
invention in the 19th century by the French number theorist Édouard Lucas. Al-
though we are not professional historians of science, we nevertheless take historical
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remarks and comments seriously. During our research we encountered many errors
or historical myths in literature, mainly stemming from the authors copying state-
ments from other authors. We therefore looked into original sources whenever we
could get hold of them.

Our guideline for citing other authors’ papers was to include “the first and
the best” (if these were two). The first, of course, means the first to our current
state of knowledge, and the best means the best to our (current) taste.

This book is also intended to render homage to Édouard Lucas and one of his
favorite themes, namely recreational mathematics in their role in mathematical
education. The historical fact that games and puzzles in general and the TH
in particular have demonstrated their utility is universally recognized (see, e.g.,
[295, 123]) more than 100 years after Lucas’s highly praised book series started
with [209].

Myths

Along the way we deal with numerous myths that have been created since the
puzzle appeared on the market in 1883. These myths include mathematical mis-
conceptions which turned out to be quite persistent, despite the fact that with
a mathematically adequate approach it is not hard to clarify them entirely. A
particular goal of this book is henceforth to act as a myth buster.

Prerequisites

A book of this size can not be fully self-contained. Therefore we assume some
basic mathematical skills and do not explain fundamental concepts such as sets,
sequences or functions, for which we refer the reader to standard textbooks like
[107, 284, 26]. Special technical knowledge of any mathematical field is not nec-
essary, however. Central topics of discrete mathematics, namely combinatorics,
graph theory, and algorithmics are covered, for instance, in [197, 36], [336, 41, 72],
and [179, 231], respectively. However, we will not follow notational conventions
of any of these strictly, but provide some definitions in a glossary at the end of
the book. Each term appearing in the glossary is put in bold face when it occurs
for the first time in the text. This is mostly done in Chapter 0, which serves as
a gentle introduction to ideas, concepts and notation of the central themes of the
book. This chapter is written rather informally, but the reader should not be dis-
couraged when encountering difficult passages in later chapters, because they will
be followed by easier parts throughout the book.

The reader must also not be afraid of mathematical formulas. They shape the
language of science, and some statements can only be expressed unambiguously
when expressed in symbols. In a book of this size the finiteness of the number
of symbols like letters and signs is a real limitation. Even if capitals and lower
case, Greek and Roman characters are employed, we eventually run out of them.
Therefore, in order to keep the resort to indices moderate, we re-use letters for
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sometimes quite different objects. Although a number of these are kept rather
stable globally, like n for the number of discs in the TH or names of special
sequences like Gros’s g, many will only denote the same thing locally, e.g., in a
section. We hope that this will not cause too much confusion. In case of doubt we
refer to the indexes at the end of the book.

Algorithms

The TH has attracted the interest of computer scientists in recent decades, albeit
with a widespread lack of rigor. This poses another challenge to the mathematician
who was told by Donald Knuth in [178, p. 709] that “It has often been said that
a person doesn’t really understand something until he teaches it to someone else.
Actually a person doesn’t really understand something until he can teach it to
a computer, i.e. express it as an algorithm.” We will therefore provide provably
correct algorithms throughout the chapters. Algorithms are also crucial for human
problem solvers, differing from those directed to machines by the general human
deficiency of a limited memory.

Exercises

Édouard Lucas begins his masterpiece “Théorie des nombres” [213, iii] with a
(slightly corrected) citation from a letter of Carl Friedrich Gauss to Sophie Ger-
main dated 30 April 1807 (“jour de ma naissance”): “Le goût pour les sciences
abstraites, en général, et surtout pour les mystères des nombres, est fort rare;
on ne s’en étonne pas. Les charmes enchanteurs de cette sublime science ne se
décèlent dans toute leur beauté qu’à ceux qui ont le courage de l’approfondir.”1

Sad as it is that the first sentence is still true after more than 200 years, the
second sentence, as applied to all of mathematics, will always be true. Just as it
is impossible to get an authentic impression of what it means to stand on top of
a sizeable mountain from reading a book on mountaineering without taking the
effort to climb up oneself, a mathematics book has always to be read with paper
and pencil in reach. The readers of our book are advised to solve the excercises
posed throughout the chapters. They give additional insights into the topic, fill
missing details, and challenge our skills. All exercises are addressed in the body of
the text. They are of different grades of difficulty, but should be treatable at the
place where they are cited. At least, they should then be read, because they may
also contain new definitions and statements needed in the sequel. We collect hints
and solutions to the problems at the end of the book, because we think that the
reader has the right to know that the writers were able to solve them.

1“The taste for abstract sciences, in general, and in particular for the mysteries of numbers,
is very rare; this doesn’t come as a surprise. The enchanting charms of that sublime science do
not disclose themselves in all their beauty but to those who have the courage to delve into it.”
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Contents

The book is organized into ten chapters. As already mentioned, Chapter 0 intro-
duces the central themes of the book and describes related historical developments.
Chapter 1 is concerned with the Chinese rings puzzle. It is interesting in its own
right and leads to a mathematical model that is a prototype for an approach to
analyzing the TH. The subsequent chapter studies the classical TH with three
pegs. The most general problem solved in this chapter is how to find an opti-
mal sequence of moves to reach an arbitrary regular state from another regular
state. An important subproblem solved is whether the largest disc moves once or
twice (or not at all). Then, in Chapter 3, we further generalize the task to reach
a given regular state from an irregular one. The basic tool for our investigations
is a class of graphs that we call Hanoi graphs. A variant of these, the so-called
Sierpiński graphs, is introduced in Chapter 4 as a new and useful approach to
Hanoi problems.

The second part of the book, starting from Chapter 5, can be understood
as a study of variants of the TH. We begin with the famous The Reve’s puzzle
and, more generally, the TH with more than three pegs. The central role is played
by the notorious Frame-Stewart conjecture which has been open since 1941. Very
recent computer experiments are also described that further indicate the inherent
difficulty of the problem. We continue with a chapter in which we formally discuss
the meaning of the notion of a variant of the TH. Among the variants treated
we point out the Tower of Antwerpen and the Bottleneck TH. A special chapter
is devoted to the Tower of London, invented in 1982 by T. Shallice, which has
received an astonishing amount of attention in the psychology of problem solving
and in neuropsychology, but which also gives rise to some deep mathematical
statements about the corresponding London graphs. Chapter 8 treats TH type
puzzles with oriented disc moves, variants which, together with the more-pegs
versions, have received the broadest attention in mathematics literature among all
TH variants studied.

In the final chapter we recapitulate open problems and conjectures encoun-
tered in the book in order to provide stimulation for those who want to pass their
time expediently waiting for some Brahmins to finish a divine task.

Educational aims

With an appropriate selection from the material, the book is suitable as a text for
courses at the undergraduate or graduate level. We believe that it is also a con-
venient accompaniment to mathematical circles. The numerous exercises should
be useful for these purposes. Themes from the book have been employed by the
authors as a leitmotif for courses in discrete mathematics, specifically by A. M. H.
at the LMU Munich and in block courses at the University of Maribor and by S. K.
at the University of Ljubljana. The playful nature of the subject lends itself to pre-
sentations of the fundamentals of mathematical thinking for a general audience.

Preface
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The TH was also at the base of numerous research programs for gifted students.
The contents of this book should, and we hope will, initiate further activities of
this sort.

Feedback

If you find errors or misleading formulations, please send a note to the authors.
Errata, sample implementations of algorithms, and other useful information will
appear on the TH-book website at http://tohbook.info.
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Chapter 0

The Beginning of the World

The roots of mathematics go far back in history. To present the origins of the
protagonist of this book, we even have to return to the Creation.

0.1 The Legend of the Tower of Brahma

“D’après une vieille légende indienne, les brahmes se succèdent depuis bien
longtemps, sur les marches de l’autel, dans le Temple de Bénarès, pour exécuter
le déplacement de la Tour Sacrée de Brahma, aux soixante-quatre étages en or
fin, garnis de diamants de Golconde. Quand tout sera fini, la Tour et les brahmes
tomberont, et ce sera la fin du monde!”

These are the original words of Professor N. Claus (de Siam) of the Collège
Li-Sou-Stian, who reported, in 1883, from Tonkin about the legendary origins of a
“true annamite head-breaker”, a game which he called LA TOUR D’HANOÏ (see
[58]). We do not dare to translate this enchanting story written in a charming
language and which developed through the pen of Henri de Parville into an even
more fantastic fable [256]. W. W. R. Ball called the latter “a sufficiently pretty
conceit to deserve repetition” ([23, p. 79]), so we will follow his view and cite Ball’s
most popular English translation of de Parville’s story:
“In the great temple at Benares, beneath the dome which marks the centre of the
world, rests a brass-plate in which are fixed three diamond needles, each a cubit
high and as thick as the body of a bee. On one of these needles, at the creation,
God placed sixty-four discs of pure gold, the largest disc resting on the brass plate,
and the others getting smaller and smaller up to the top one. This is the Tower of
Bramah [sic!]. Day and night unceasingly the priests transfer the discs from one
diamond needle to another according to the fixed and immutable laws of Bramah
[sic!], which require that the priest must not move more than one disc at a time
and that he must place this disc on a needle so that there is no smaller disc below
it. When the sixty-four discs shall have been thus transferred from the needle on

A. M. Hinz et al., The Tower of Hanoi – Myths and Maths,
DOI: 10.1007/978-3-0348-0237-6_1, � Springer Basel 2013



2 Chapter 0. The Beginning of the World

which at the creation God placed them to one of the other needles, tower, temple,
and Brahmins alike will crumble into dust, and with a thunderclap the world will
vanish.”

Ball adds: “Would that English writers were in the habit of inventing
equally interesting origins for the puzzles they produce!”, a sentence censored by
H. S. M. Coxeter in his revised edition of Ball’s classic [24, p. 304].

As with all myths, Claus’s legend underwent metamorphoses: the decoration
of the discs [étages] with diamonds from Golconda1 transformed into diamond
needles, de Parville put the great temple of Benares2 to the center of the world
and moved “since quite a long time” to “the beginning of the centuries”, which Ball
interprets as the creation. As if the end of the world would not be dramatic enough,
Ball adds a “thunderclap” to it. So the Tower of Brahma became a time-spanning
riddle. Apart from his strange spelling of the Hindu god, Ball also re-formulated
the rule which de Parville enunciated as “he must not place that disc but on
an empty needle or above [au-dessus de] a larger disc”. More importantly, while
de Parville insists in the task to transport the tower from the first to the third
needle, Ball’s Bramah did not specify the goal needle; we will see that this makes
a difference!

In another early account, the Dutch mathematician P. H. Schoute is more
precise by insisting to put the disc (or ring in his diction) “on an empty [needle] or
on a larger [disc]” [286, p. 275] and specifying the goal by alluding to the Hindu
triad of the gods Brahma, Vishnu, and Shiva: Brahma, the creator, placed the discs
on the first needle and when they all reach Shiva’s, the world will be destroyed;
in between, it is sustained by the presence of Vishnu’s needle. The latter god will
also watch over the observance of what we will call the (cf. [215, p. 55])

divine rule: you must not place a disc on a smaller one.

Let us hope that Sarasvati, Brahma’s consort and the goddess of learning, will
guide us through the mathematical exploration of the fascinating story of the
sacred tower!

Among the many variants of the story, which would fill a book on its own,
let us only mention the reference to “an Oriental temple” by F. Schuh [288, p. 95]
where 100 alabaster discs were waiting to be transferred by believers from one of
two silver pillars to the only golden one. Quite obviously, Schoute’s compatriot
was more in favor of the decimal system than the Siamese inventor of the puzzle,
who, almost by definition, preferred base two.

De Parville, in his short account of what came to be known as the Tower of
Hanoi (TH), was also very keen in identifying this man from Indochina. A man-
darin, says he, who invents a game based on combinations, will incessantly think
about combinations, see and implement them everywhere. As one is never betrayed
but by oneself, permuting the letters of the signatory of the TH, N. Claus (de

1at the time the most important market for diamonds, located near the modern city of
Hyderabad

2today’s Vārānas̄ı
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Siam), mandarin of the collège Li-Sou-Stian will reveal Lucas d’Amiens, teacher
at the lycée Saint-Louis.

François Édouard Anatole Lucas (see Figure 0.1) was born on 4 April 1842 in
the French city of Amiens and worked the later part of his short life at schools in
Paris. Apart from being an emminent number theorist, he published, from 1882,

Figure 0.1: Édouard Lucas, 1842–1891

a series of four volumes of “Récréations mathématiques” [214, 218, 215, 216]3,
accomplished posthumously in 1894. They stand in the tradition of J. Ozanam’s
popular “Récréations mathématiques et physiques” which saw editions from 1694
until well into the 18th century. The fourth volume of this work contains a plate
[249, pl. 16 opposite p. 439] showing in its Figure 47 what the author calls “Sigillum
Salomonis”. It is a mechanical puzzle which Lucas discusses in the first volume of
his series under the name of “baguenaudier” (cf. [209, p. 161–186]) and to which his
leaflet [58] refers for more details on the TH which only much later enters volume
three [215, p. 55–59]. It seems that this more ancient puzzle was the catalyst for
Lucas’s TH.

0.2 History of the Chinese Rings

The origin of the solitaire game Chinese rings (CR), called jiulianhuan (“Nine
linked rings”, 九连环) in today’s China, seems to be lost in the haze of history.

3Throughout we cite editions which were at our disposition.
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The legends emerging from this long tradition are mostly frivolous in character,
reporting from a Chinese hero who gave the puzzle to his wife when he was leav-
ing for war, for the obvious motive of “entertaining” her during his absence. The
present might have looked as in Figure 0.2.

Figure 0.2: The Chinese rings
(courtesy of James Dalgety, http://puzzlemuseum.org)

© 2012 Hordern-Dalgety Collection

The most serious attribution has been made by S. Culin in his ethnological
work on Eastern games [62, p. 31f]. According to his “Korean informant”, the caring
husband was Hung Ming, actually a real person (Zhuge Liang, 诸葛亮, 181–234).
However, the material currently available is also compatible with a European origin
of the game.

The earliest known evidence can be found in Chapter 107 of Luca Pacioli’s De
viribus quantitatis (cf. [250, p. 290–292]) of around 1500, where the physical object,
with a certain number of rings, is described and a method to get the rings onto the
bar is indicated. Pacioli speaks of a “difficult case”. A 7-ring version was discussed
in the middle of the 16th century in Book 15 of G. Cardano’s De subtilitate libri
XXI as a “useless” instrument (“Verùm nullius vsus est instrumétú ex septem
annulis...”) which embodies a game of “admirable subtlety” (“miræ subtilitatis”)
[50, p. 492f]. On the other hand, Cardano claimed that the ingenious mechanism
was not that useless at all and therefore employed in locks for chests, a claim
supported by Lucas in [214, p. 165, footnote]. The reader may consult [1] for more
myths.

Many names have been given to the Chinese rings over the centuries. They
have been called Delay guest instrument in Korea, Cardano’s rings or tiring irons
in England (Dudeney reports in 1917 that “it is said still to be found in obscure
English villages (sometimes deposited in strange places such as a church belfry)”;
cf. [79, Problem 417].), and Nürnberger Zankeisen (quarrel iron) in Germany, but
the most puzzling designation is the French baguenaudier. In the note [119] of the
Lyonnais barrister Louis Gros, almost 5 out of 16 text pages are devoted to the
etymology with the conclusion that it should be “baguenodier”, deriving from a
knot of rings. However, Lucas did not follow Gros’s arguments and so the French
name of a plant (Colutea arborescens) is still attached to the puzzle. But why then
has “baguenauder” in French the meaning of strolling around, wasting time?
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The puzzle consists of a system of nine rings, bound together in a sophisti-
cated mechanical arrangement, and a bar (or shuttle as in weaving) with a handle
at one end. At the beginning, all rings are on the bar. They can be moved off
or back onto the bar only at the other end, and the structure allows for just two
kinds of individual ring moves, the details of which we will discuss in Chapter 1.
The task is to move all rings off the bar. Let us assume for the moment that this
and, in fact, all states, i.e. distributions of rings on or off the bar, can be reached.
(Lucas [214, p. 177] actually formulates the generalized problem to find a shortest
possible sequence of moves to get from an arbitrary initial to an arbitrary goal
state.) Then we may view the puzzle as a representation of binary numbers from
0 to 511 = 29 − 1 if we interpret the rings as binary digits, or bits, 0 standing for
a ring off the bar and 1 for a ring on the bar. This leads us back even further in
Chinese history, or rather mythology, namely to the legendary Fu Xi (伏羲), who
lived, if at all, some 5000 years ago. To him Leibniz attributes [189, p. 88f] the ba
gua (八卦), the eight trigrams consisting of three bits each, and usually depicted
in a circular arrangement as in Figure 0.3, where a broken (yin, 阴) line stands for
0, a solid (yang, 阳) line for 1, and the least significant bit is the outermost one.

Figure 0.3: Fu Xi’s arrangement of the trigrams

Legend has it that Fu Xi saw this arrangement on the back of a tortoise.
(Compare also to the Korean flag, the Taegeukgi.) Following the yin-yang symbol
in the center of the figure, Fu Xi, Leibniz and we recognize the numbers from
0 to 7 in binary representation. Doubling the number of bits will give a supply
of 64 hexagrams for the I Ching (yi jing, 易经), the famous Book of Changes;
cf. [352] and [209, p. 149–151]. It seems, however, that Leibniz went astray with
the philosophical and religious implications he drew from yin and yang; see [321].
On the other hand, the mathematical implications of binary thinking can not be
over-estimated.
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0.3 History of the Tower of Hanoi

The sixth chapter in [209] was devoted by Lucas to “The Binary Numeration”. Here
he describes the advantages of the binary system [209, p. 148f], the Yi Jing [209,
p. 149–151], and perfect numbers [209, p. 158–160], before he starts his seventh
recreation on the baguenaudier, as mentioned before. We do not find, however,
the most famous of Lucas’s recreations in this first edition, the TH. This is not
surprising though. In the box containing the original game, preserved today in the
Musée des arts et métiers in Paris, one can find the following inscription, most
probably in Lucas’s own hand:

La tour d’Hanoï, —

Jeu de combinaison pour
appliquer le système de la numération
binaire, inventé par M. Edouard Lucas
(novembre 1883) — donné par l’auteur.

So we have a date of birth for the TH. (In [213, p. xxxii], Lucas claims that
the puzzle was published in 1882, but there is no evidence for that.) The idea of
the game was immediately pilfered around the world with patents approved, e.g.,
in the United States (No 303,946 by A. Ohlert, 1884) and the United Kingdom
(No 20,672 by A. Gartner and G. Talcott, 1890). In 1888, Lucas donated the
original puzzle (see Figures 0.4 and 0.5), together with a number of mechanical
calculating machines to the Conservatoire national des arts et métiers (Cnam) in
Paris, where he also gave public lectures for which a larger version of the TH was
produced; cf. [212].

The cover of the original box shows the fantastic scenery of Figure 0.6. The
picture, also published on 19 January 1884 in [59, p. 128], repeats all the allusions
to fancy names of places and persons we already found on the leaflet [58] which
accompanied the puzzle. Two details deserve to be looked at closer. The man
supporting the ten-storied pagoda has a tatoo on his belly: A U—Lucas was “agrégé
de l’université”, entitling him to teach at higher academic institutions. The crane,
a symbol for the Far East, holds a sheet of paper on which is written, with bamboo
leaves, the name Fo Hi—the former French transliteration of Fu Xi whom we met
before.

But why the name “The Tower of Hanoi”? We would not think of the capital
of today’s Vietnam in connection with Brahmins moving 64 golden discs in the
great temple of Benares. However, when Lucas started to market the puzzle in
its modest version with only eight wooden discs, French newspapers were full of
reports from Tonkin. In fact, Hanoi had been seized by the French in 1882, but
during the summer of 1883 was under constant siege by troops from the Chinese
province of Yunnan on the authority of the local court of Hué, where on 25 August
1883 the Harmand treaty established the rule of France over Annam and Tonkin
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Figure 0.4: The original Tower of Hanoi
© Musée des arts et métiers–Cnam Paris / photo M. Favareille
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Figure 0.5: Base plate of the original puzzle
© Musée des arts et métiers–Cnam Paris / photo M. Favareille
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Figure 0.6: The cover plate of the Tower of Hanoi

(cf. [252, Section 11]). In [256], de Parville calls a variant of the TH, where discs
of increasing diameter were replaced by hollow pyramids of decreasing size, the
“Question of Tonkin” and comments the fact that the discs of Claus’s TH were
made of wood instead of gold as being more prudent because it concerns Tonkin.
So Lucas selected the name of Hanoi because it was in the headlines at the time.
Most probably, our book today would sell better had we chosen the title “The
Tower of Kabul”!

Lucas never travelled to Hanoi [210, p. 14]. However, he was a member of the
commission which edited the collected works of Pierre de Fermat and was sent on
a mission to Rome to search in the famous Boncompagni library for unpublished
papers of his illustrious compatriot (cf. [216, p. 91]). Was it on this voyage that Lu-
cas invented the TH? The leaflet, which we reproduce here as Figure 0.7, supports
this hypothesis when talking in a typical Lucas style about FER-FER-TAM-TAM,
thereby transforming the French government into a Chinese one.
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Figure 0.7: Recto and verso of the leaflet accompanying the Tower of Hanoi puzzle

Apart from this, the front page of [58] discloses the motive of professor
N. Claus (de Siam) for his game, namely the vulgarization of science. He offers
enormous amounts of money for the person who solves, by hand, the TH with 64
discs and reveals the necessary number of displacements, namely

18 446 744 073 709 551 615 , (0.1)

together with the claim that it would take more than five milliard4 centuries to
carry out the task making one move per second. The number in (0.1) is explained,
together with the rules of the game, which are imprecise concerning the goal peg
and redundant with respect to the divine rule, on the back of [58]. Here one can
find the famous recursive solution, stated for an arbitrary number of discs, but
demonstrated with an example: if one can solve the puzzle for eight discs, one can
solve it for nine by first transferring the upper eight to the spare peg, then moving
the ninth disc to the goal peg and finally the smaller ones to that peg too. So
by increasing the number of discs by one, the number of moves for the transfer
of the tower doubles plus one move of the largest disc. Now the superiority of
the binary number system becomes obvious. We write 2n for an n-fold product
of 2s, n ∈ N0, e.g., 20 = 1 (by convention, the product of no factors is 1), 21 = 2,

4billion, i.e. 109
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22 = 4, and so forth. Then every natural number N ≥ 1 can (uniquely) be written
as (NK−1 . . . N1 N0)2, such that N = ∑K−1

k=0 Nk ⋅ 2k with K ∈ N and Nk ∈ {0,1},
NK−1 = 1. (This needs a mathematical proof, but we will not go into it. The
index “2” is meant to distinguish this representation of N from the decimal one;
the brackets may be omitted.) Clearly, 2n = 10 . . .02 with n bits 0 and by binary
arithmetic, 1 . . . 12 = 2n − 1 with n bits 1. Now doubling a number and adding 1

means concatenating a bit 1 to the right of the number. The recursive solution
therefore needs 2n−1 moves to transfer a tower of n discs. Calculating the 64-fold
product of 2 and subtracting 1 in decimal representation, we arrive at the number
shown in (0.1).

This number evokes another “Indian” myth which comes in even more versions
than the Tower of Brahma. The nicest, but not the first, of these legends is by
J. F. Montucla [242, p. 379–381], who tells us, in citing the gorgeous number, that
the Indian Sessa, son of Daher (Sissa ben Dahir), invented (a prototype of) the
chess game which he presented to the Indian king (Shirham). The latter was so
pleased that he offered to Sessa whatever he desires. Contrary to our experience
with fairy tales, Sessa did not ask for the daughter of the king, but pronounced a
“modest” wish: a grain of wheat (rice in other versions) on the first square of the
chess board, two on the second, four on the third and so on up to the last, the
64th one. The king’s minister, however, found out that it was impossible to amass
such an amount of wheat and we are told by Montucla that the king admired
Sessa even more for that subtle request than for the invention of the game. (In
less romantic versions, Sessa was beheaded for his impertinence.)

In this “arithmetic bagatelle”, as Montucla called it, we recognize immedi-
ately, that Sessa asked to concatenate a bit 1 to the left of the binary number of
grains when adding a new square of the board, all in all 1 . . . 12 = 264 − 1 grains.

With the Mersenne numbers5 (for M. Mersenne) Mk = 2k − 1, we have an
example of a sequence (Mk)k∈N0

, called Mersenne sequence, which fulfills two
recurrences

M0 = 0, ∀k ∈ N0 ∶ Mk+1 = 2Mk + 1 , (0.2)

M0 = 0, ∀k ∈ N0 ∶ Mk+1 =Mk + 2k . (0.3)

We will see later that (0.2) and (0.3) are prototypes of a most fundamental type
of recurrences, each of them leading to a uniquely determined sequence.

The most ubiquitous of all sequences defined by a recurrence is even older. In
his manuscript Liber abbaci of 1202/1228, Leonardo Pisano, now commonly called
Fibonacci (figlio di Bonaccio), posed the following problem:

Quot paria coniculorum in uno anno ex uno pario germinentur.

The solution of the famous rabbit problem invoked the probably most popular
integer sequence of all times, which was accordingly named Fibonacci sequence by

5Some authors use this term only if k is prime.
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Édouard Lucas (cf. [213, p. 3]). Its members Fk, the Fibonacci numbers (cf. [264]),
are given by the recurrence

F0 = 0, F1 = 1, ∀k ∈ N0 ∶ Fk+2 = Fk+1 + Fk. (0.4)

Lucas employed this sequence in a somewhat more serious context in connection
with the distribution law for prime numbers in [207], thereby introducing a variant,
namely the sequence (for k ≥ 1) Lk ∶= F2k/Fk which fulfils the same recurrence
relation as in (0.4), but with the seeds replaced by L1 = 1 and L2 = 3 (or by
L0 = 2, L1 = 1 to start the sequence at k = 0). Lucas still named this sequence for
Fibonacci as well in [206, p. 935], but it is now called the Lucas sequence (and its
members Lucas numbers). Fibonacci and Lucas numbers can also be calculated
explicitly and they exhibit an interesting relation to the famous Golden section as
shown in Exercise 0.1; cf. [329]. The methods developed in [207] allowed Lucas to
decide whether certain numbers are prime or not without reference to a table of
primes, and he announced his discovery that 2127 − 1 is a (Mersenne) prime. (Is
there a relation to the TH with 127 discs?) With this he was the last human world
record holder for the “largest” prime number, to be beaten only by computers 75
years later, albeit using Lucas’s method.

Édouard Lucas has never been properly recognized in his home country
France, neither in his time, nor today. In 1992, M. Schützenberger writes (to
be found in [289]): “...Édouard Lucas, who has no reputation among professional
mathematicians, however, because he is schools inspector and does not publish
anything else but books on entertaining mathematics.” Only in 1998 [69] and with
her thesis [70], A.-M. Décaillot put the life and number-theoretical work of Lu-
cas into light. Before that there were just two short biographies in [142, p. 540f]
and [339, Section 3.1]. Already in 1907 appeared a collection of biographies and
necrologies [219]. As it turns out, Lucas was in the wrong place at the wrong time:
with his topics from number theory and his enthusiasm for teaching and popular-
izing mathematics he put himself outside the infamous main-stream. Being in the
wrong place at the wrong time seemed to be Lucas’s fate: the story of his death
sounds as if it was just a malice of N. Claus (de Siam). Although the source is
unknown, we give here a translation of the most moving of all accounts from the
journal La Lanterne of 6 October 1891 [219, p. 17]:

The death of this “prince of mathematics”, as the young generations
of students called him, has been caused by a most vulgar accident. In
a banquet at which assisted the members of the [Marseille] congress
during an excursion into Provence, a [male] servant, who found himself
behind the seat of M. Edouard Lucas, dropped, by unskilfulness, a pile
of plates. A broken piece of porcelain came to hit the cheek of M. Lucas
and caused him a deep injury from which blood flew in abundance.
Forced to suspend his work, he returned to Paris. He took to his bed
and soon appeared erysipelas which would take him away.
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Édouard Lucas died on 3 October 1891, aged only 49. His tomb, perpetual,
but in a deplorable condition, can be found on the Montmartre cemetary of Paris.

Upon his untimely death, Lucas left the second volume of his “Théorie des
nombres” [213] unfinished. E. T. Bell writes in 1951 [27, p. 230]: “Some years
ago the fantastic price of thirty thousand dollars was being asked for Lucas’s
manuscripts. In all his life Lucas never had that much money.” It is not known
where these manuscripts remained. The same fate happened to a collection of six
“Jeux scientifiques” (cf. [217, Note III]), for which Lucas earned two medals at the
World’s Fair in Paris in 1889 (the one for which another tower, namely Eiffel’s, was
erected). Some of these games are presented in Lucas’s article [211]. The puzzle
collection, dedicated to his children Paul and Madeleine, was advertised in Cosmos,
a scientific magazine, of 7 December 1889 as a first series, each single game being
sold by “Chambon & Baye” of Paris for the price of 10 francs. Among these was a
new version of the TH, this time with five pegs and 16 discs in four colors. He says
that the number of problems one can pose about the new TH is uncalculable. Five
of the brochures accompanying the puzzles are preserved, the only missing one is
about “Les Pavés florentin du père Sébastien”, also described in [22, p. 158]. Bell
suggested “His widely scattered writings should be collected, and his unpublished
manuscripts sifted and edited.” Despite some efforts (cf. [129, 18]), this goal is
still far from being reached. In particular, it would be desirable to review Lucas’s
œuvre in recreational mathematics just like Décaillot has done it for his work in
number theory.

For now we have to concentrate on Lucas’s greatest and most influential
invention. At the end of his account on the TH in [215, p. 58f], Lucas writes:
“Latterly, the foreign industry has taken possession of the game of our friend
[N. Claus (de Siam)] and of his legend; but we can assert that the whole had been
imagined, some time ago already [in 1876 according to [210, p. 14]], in no 56 of
rue Monge, in Paris, in the house built on the site of the one where Pascal died
on 19 August 1662.”

Indian Verses, Polish Curves, and Italian Pavements

B. Pascal is known, among other things, for the triangle which in his seminal
treatise, published posthumously in 1665, he called the Arithmetical triangle (AT)
(cf. [81]). However, the famous arrangement of numbers was known long before
him and can be found implicitly as early as in the tenth century in a commentary
on Piṅgala’s “Chandah.śāstra” (ca. -200) by Halāyudha (cf. [161, p. 112f] and [139,
Section 3.4]). The Mount Meru (Meru-Prastāra) according to this description can
be seen in Figure 0.8.

The rule is to start with a 1 in the single square on top and to fill out each
subsequent line by writing the sum of the touching squares of the line immediately
above. Piṅgala was investigating poetic meters of short (0) and long (1) syllables,
a discipline called prosody. The problem was to analyze their combinations, and
this can be viewed as the birth of combinatorics. In how many ways can they be
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Figure 0.8: The Meru-Prastāra

combined to form a word of length k? Quite obviously (for us!), the answer is 2k,
the number of bit strings of length k. But looking closer, how many combinations
of k syllables are there containing ` long and (consequently) k − ` short ones? The
answer is contained in Mount Meru by looking at the `th entry from the left in
the kth line from the top, both counting from 0. (It is a puzzle why almost all
presentations of AT start with the single 1 on top. Although the modern mathe-
matician is used to such abstruse things, how did the Ancients know that there is
precisely one way to choose no long syllable (and no short one either for that mat-
ter) to form an empty word?) This number will be pronounced “k choose `” and is
denoted by (k

`
). Summing the entries of a single line in Mount Meru immediately

leads to the formula

∀k ∈ N0 ∶
k

∑̀
=0

(k
`
) = 2k .

Another question that can be solved by looking at Mount Meru (cf. [161, p. 113f])
is the following: if long syllables take 2 beats (or morae), short ones only 1 beat
(mora), how many words (of varying lengths) can be formed from a fixed number
of m morae? Since m = 2`+k−` = k+`, this number can be found by summing over
all (k

`
) = (m−`

`
), i.e. some mounting diagonal in Mount Meru, with the astonishing

result that

∀m ∈ N0 ∶
⌊m

2
⌋

∑̀
=0

(m − `
`
) = Fm+1 , (0.5)

where the floor function is defined for x ∈ R by ⌊x⌋ =max{a ∈ Z ∣ a ≤ x}. (Similarly,
the ceiling function is characterized by ⌈x⌉ =min{b ∈ Z ∣ b ≥ x}.)

The formula in (0.5) can be proved by recourse to (0.4), which is even more
surprising because it apparently had been found 50 years before Fibonacci!
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During its long history, the AT reappeared in many disguises. For instance,
evaluating the kth power of the binomial term a + b, we have to sum up products
of k factors containing either an a or a b from each of the k individual factors of
the power. Identifying a with short and b with long syllables from prosody, we see
that the product ak−`b` shows up precisely (k

`
) times, i.e. we arrive at

∀k ∈ N0 ∶ (a + b)k =
k

∑̀
=0

(k
`
)ak−`b` .

This is the famous binomial theorem, and the (k
`
) are now commonly known

as binomial coefficients. However, this denomination addresses only one particular
aspect of these numbers and it is a breach of the historical facts; we therefore
prefer to call them combinatorial numbers.

In more modern terms, the combination of short and long syllables in a word
of length k can also be interpreted as choosing a subset from a set K with ∣K ∣ = k
elements. Here 0 means that an element of K does not belong to the subset chosen,
while 1 means that it is an element of the subset. In other words, there are exactly
(k
`
) subsets of K which have precisely ` elements. Writing (K

`
) for the set of all

subsets of K of order `, we get

∀ ` ∈ {0, . . . , ∣K ∣} ∶ ∣(K
`
)∣ = (∣K ∣

`
) .

A sound mathematical description of the AT, based on this formula, and some
important notation can be found in Exercise 0.2.

The direct application of arguments based on choices is the starting point
for proving many interrelations between combinatorial numbers. For instance, if
you want to select ` balls from a collection of b black and w white balls, you may
successively pick λ black ones and then ` − λ white balls. There are (b

λ
)( w

`−λ
) such

combinations, whence

∀ b,w, ` ∈ N0 ∶ (b +w
`
) = `

∑
λ=0

(b
λ
)( w

` − λ) . (0.6)

This can be viewed as an extension of the recursive formula in Exercise 0.2 c),
which is case b = 1 of (0.6) and could therefore be called the black sheep formula.

Combinatorics is also the historical starting point for probability theory, which
has its early roots in discussions about games of chance. One of these was treated
mathematically by Euler in 1751 (see [97]) under the name of “Game of encounter”
(Jeu de rencontre). It had been studied earlier by Pierre Rémond de Montmort
in the first work entirely devoted to probability, his “Essay d’Analyse sur les Jeux
de Hazard”, whose second edition appeared in 1713, but Euler’s presentation is,
as usual, more clearly written.

Two players, A and B, hold identical packs of cards which are shuffled. They
start to compare card by card from their respective decks. If during this procedure
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two cards coincide, then A wins. If all cards have been used up without such an
encounter having occurred, then B is the winner. The question is: what is the
probability of A (or B for that matter) to win. (In Montmort’s version, the number
of cards in each deck was 13, and the game was accordingly called “Jeu du Treize”.)

Euler solved this question in the following way. Let us assume that a deck
has k ∈ N0 cards and that the deck of A is naturally ordered from 1 to k; this
has to be compared with the k! possible decks B can hold. Some easy cases are
done first: for k = 0, B wins; for k = 1, A is the winner; for k = 2, the chances are
1 ∶ 1. The most instructive case is k = 3, where 2! = 2 decks of B, namely (1,2,3)
and (1,3,2), will make A the winner in the first round. In the second round, the
same number of decks ((1,2,3) and (3,2,1)), would be favorable for A, however,
one obviously has to delete deck (1,2,3), from this list. This is because it would
have made A the winner in the first round of a game with only 2 cards, namely
without card 2 present. This is a prototype application of the inclusion-exclusion
principle: an element must not be counted twice in the union of two (or more)
finite sets. Of the remaining 3 decks, A will win the third round with deck (2,1,3)
in B’s possession only, so all in all in 4 out of 3! = 6 cases. The general rule which
Euler found for the number fk,` of captures of A in round ` ∈ [k] is

∀k ∈ N ∶ fk,1 = (k − 1)! ∧ ∀ ` ∈ [k − 1] ∶ fk,`+1 = fk,` − fk−1,` .
From this, Euler deduces, by what we would call a double induction on k and `

today,

∀k ∈ N ∀ ` ∈ [k] ∶ fk,` =
`−1

∑
m=0

(−1)m(` − 1
m
)(k − 1 −m)! . (0.7)

To obtain the number fk of decks of B favorable for A to win, we have to sum
equation (0.7) over `. Euler used an ingenious trick based on an observation about
the AT: if one adds the entries in a diagonal parallel to the left side of the triangle
down to a certain entry, one obtains the entry immediately to the right of it in
the next line, i.e.

∀k ∈ N, m ∈ [k]0 ∶
k

∑
`=m+1

(` − 1
m
) = ( k

m + 1) ;

this formula can also easily be proved by induction. We now get for k ∈ N:

fk = k

∑̀
=1

fk,` = k

∑̀
=1

`−1

∑
m=0

(−1)m(` − 1
m
)(k − 1 −m)!

= k−1

∑
m=0

k

∑
`=m+1

(−1)m(` − 1
m
)(k − 1 −m)!

= k−1

∑
m=0

(−1)m(k − 1 −m)! k

∑
`=m+1

(` − 1
m
)

= k−1

∑
m=0

(−1)m( k

m + 1)(k − 1 −m)! = k!
k−1

∑
m=0

(−1)m
(m + 1)! .
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Hence, A’s probability to win is
fk

k!
= k−1

∑
m=0

(−1)m
(m + 1)! . Euler ends by remarking that

this value tends, for k → ∞, to 1 − 1

e
≈ 0.632, where e is, very appropriately so,

Euler’s number.
Impressive as this derivation is, there is an easier way to obtain the solution.

It is again Euler who, 28 years later, returns to this “curious question” in [98]. In
fact, observing that fk is just the number of permutations σ on [k] which have at
least one fixed point, i.e. an i ∈ [k] such that σ(i) = i, we may equally well consider
the complementary number fk = k! − fk of derangements of [k], namely those
permutations without a fixed point. The reader is invited to follow this approach
in Exercise 0.3, where the subfactorials k¡ are introduced.

Another interesting number scheme can be based on the method of interca-
lation, proposed in connection with a number theoretical function by G. Eisen-
stein [82]. On his request, this has been elaborated by M. Stern in [301], unfor-
tunately only after the former’s untimely death. Stern sets out from a pair (a, b)
of natural numbers and defines a(n infinite) sequence ((a, b)n)n∈N0

of (finite) se-
quences ((a, b)n(µ))µ∈[2n+1]0 in the following way: (a, b)0(0) = a, (a, b)0(1) = b,
and the next sequences are obtained by successively intercalating the sum of two
neighboring numbers. This can be arranged in an array and will be called Stern’s
diatomic array for the two atoms (or seeds) a and b. The examples investigated by
Stern, namely (1,1) and (0,1) are shown in Figure 0.9.

1 1

1 2 1

1 3 2 3 1

1 4 3 5 2 5 3 4 1

1 5 4 7 3 8 5 7 2 7 5 8 3 7 4 5 1

0 1

0 1 1

0 1 1 2 1

0 1 1 2 1 3 2 3 1

0 1 1 2 1 3 2 3 1 4 3 5 2 5 3 4 1

Figure 0.9: Stern’s diatomic arrays for (1,1) (top) and (0,1) (bottom) and n ∈ [5]0

Contrary to the AT, the method of intercalation preserves all entries from
one row to the next and therefore their lengths grow exponentially instead of only
linearly in AT. Among the many interesting properties of these arrays which Stern
describes, we note that the (1,1) array is, of course, symmetric with respect to
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the center column:

∀µ ∈ [2n + 1]0 ∶ (1,1)n(2n − µ) = (1,1)n(µ) ,
so it suffices to determine half of the entries, which can be done recursively using
the (0,1) scheme:

∀µ ∈ [2n + 1]0 ∶ (1,1)n+1(µ) = (1,1)n(µ) + (0,1)n(µ) .
This shows that all the information is contained in the (0,1) array which has the
property that the beginning segment is preserved in all later rows, i.e. for every
m ≥ n we have

∀µ ∈ [2n + 1]0 ∶ (0,1)n(µ) = (0,1)m(µ) .
Therefore, the following sequence (0,1)∞ on N0, which is called Stern’s diatomic
sequence, is well defined:

∀µ ∈ [2n + 1]0 ∶ (0,1)∞(µ) = (0,1)n(µ) .
We will meet this sequence on several occasions throughout the book.

The first practical use of Stern’s arrays was made implicitly by the French
clock maker Louis-Achille Brocot in his seminal account [44], in which he proposed
a new method to calculate gearings of pendulum clocks. His contemplations were
caused by the problem to repair worn movements and in particular to find the
ratios of pinions and angular gears. For practical reasons the fractions involved
should have small numerators and denominators, since they are referring to the
number of teeth. Brocot also wanted to make his description of the method acces-
sible to those of his colleagues who were not well trained in mathematics. All this
led him to consider what generations of pupils assumed to be the most natural
method to add two fractions, namely by adding the respective numerators and
denominators to arrive at the resulting fraction; after all this is the analogue way
to multiply fractions! However, applying this “addition” to two positive fractions
will not lead to a larger one, but to one in between the two; Lucas [213, p. 466–469]
therefore called it mediation and the resulting fraction

a

b
⊕ c

d
∶= a + c

b + d
the mediant of

a

b
and

c

d
. It is easy to see that in fact

a

b
< c

d
⇒ a

b
< a

b
⊕ c

d
< c

d
.

Lucas then [213, p. 469f] defines the Brocot sequence (βn)n∈N0
, each element of

which consists of a finite sequence of fractions as arranged into the array of Fig-
ure 0.10. (Indices have been adapted to our notation.)
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Figure 0.10: Brocot array for n ∈ [5]0

We easily recognize that βn(µ) = (0,1)n(µ)(1,1)n(µ) for µ ∈ [2n+1]0. G. Halphén [124,

Lemma 1] and Lucas [213, p. 470–474] observed that all rationals from [0,1] can be
found as fractions in lowest terms in Brocot’s array; in fact, in row n all (proper)
fractions with denominator up to n+1 can be found (for the first time). This shows
that all of Brocot’s goals have been reached.

Another interesting consequence ([124, p. 175], [213, p. 474]) is that the
number of occurrences of n ∈ N in the sequence ((1,1)n−1)µ∈[2n−1] is ϕ(n), where
ϕ is Euler’s phi function that counts the number of positive integers not greater
than and relatively prime to n. This and the properties of the Brocot array had
already been anticipated in Stern’s article [301], but his focus was not on fractions.

During the 19th century, number theorists became interested in the divisibil-
ity of combinatorial numbers. In Figure 0.11 squares with even entries have been
colored white, those with odd entries black.

The AT mod 2 can, of course, be more easily obtained by using binary ad-
dition without carry in Halāyudha’s construction. This has been interpreted as
the action of a cellular automaton by S. Wolfram in [343] (cf. also his Rule 90
in [344, p. 25f, 610f]) or as the conversion of local interaction to global order by
B. Mandelbrot [228, p. 328f]; see Figure 0.12, where a single + in the 0th line
engenders the familiar pattern in later lines. This is a possible explanation for the
development of color patterns in sea shells; cf. [233].

But there is even a way to tell whether (k
`
) is odd or even without hunting

down Mount Meru, based on a consequence of famous results of E. E. Kummer
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Figure 0.11: The Meru-Prastāra mod 2

(cf. [187, p. 115f]) and Lucas (cf. [208, Section XXI]), namely6

(k
`
)mod 2 = ∞∏

i=0

(`i ≤ ki) , (0.8)

where ki and `i are the bits of k and `, respectively; moreover, we have employed
Iverson’s convention that (S) = 1, if statement S is true, and (S) = 0, if S is
false. In practice, the product is, of course, finite because only finitely many bits
of k or ` are non-zero.

− − − − + − − − −
− − − + + − − −

− − − + − + − − −
− − + + + + − −

− − + − − − + − −
− + + − − + + −

− + − + − + − + −
+ + + + + + + +

+ − − − − − − − +
Figure 0.12: AT mod 2 as produced by a cellular automaton

Equation (0.8) says that (k
`
) is odd if and only if every bit of ` is less than or

equal to the corresponding bit of k. For instance, since 14 = 11102 and 10 = 10102,
we immediately infer that (14

10
) is odd without calculating its value. If we did, it

would come as no surprise that One Thousand and One Nights is full of oddities.
For a more elaborate example, see Exercise 0.4.

6By n mod p ∈ [p]0 we denote the remainder of division of n by p.
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A sketch of proof for Lucas’s identity (0.8) can be inferred from looking at
Figure 0.12: by induction it can be shown that, starting from (0

`
) = (` = 0), for

every n ∈ N0 rows 2n to 2n+1 − 1 of AT mod 2 can be obtained from rows 0 to
2n−1 by taking two copies of these, shifting them 2n places down and 2n places to
the left and to the right, respectively, and write + precisely at those places where
+ and − meet. (Actually, the combination ++ does not occur in the two copies.)
But this means that (2n+k

`
) and (2n+k

2n+`
) both have the same parity as (k

`
) for all

k ∈ [2n]0 and ` ∈ N0, whereas ( k

2n+`
) = 0. Again induction proves (0.8).

In the 20th century, people were able to draw ever taller Meru Mounts mod 2
(see Figure 0.13 for one with 65 lines) and discovered an interesting pattern. It
looks like an object introduced by the Polish mathematician W. Sierpiński back
in 1915 ([292]; cf. also [293, p. 99–106]) for a totally different purpose. Sierpiński
wanted to construct an example of a curve all of whose points are ramification
points. He achieved this by repeatedly replacing a line segment by a twofold broken
line segment and rescaling as in the upper row in Figure 0.14.

Figure 0.13: Mount Meru mod 2 with 65 lines

The limiting object has been given the disgusting name Sierpiński gasket by
Mandelbrot [227, p. 56] from the French “jointe de culasse de Sierpiński” in [226].
He was led to this inelegant designation (cf. [228, p. 142]) by the second of three
methods to obtain this mathematical object, namely starting from a filled (equi-
lateral) triangle to cut out the open middle triangle and repeating this for the
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Figure 0.14: Three ways to construct the Sierpiński triangle

remaining triangles ad infinitum (see the center row in Figure 0.14). It is remark-
able that 800 years before Sierpiński the artists of the Cosmati family in Italy had
already anticipated this construction by producing examples of the third repeating
step. One of them is shown in Figure 0.15. This picture, which demonstrates that
beauty has a place in mathematics, discloses how tasteless Mandelbrot’s naming
really is.

Figure 0.15: Cosmatian floor decoration in San Clemente, Rome
© 2012 A. M. Hinz
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We will therefore call this most fascinating mathematical object, which is
now one of the prototypes of a fractal, the Sierpiński triangle (ST). A third way to
construct it is by successively adding boundary lines of triangles as shown in the
bottom row of Figure 0.14 and taking the closure of the emerging set of points in
the plane. Each of the three constructions shows that ST is self-similar, i.e. each of
the three subtriangles has the same mathematical structure as the whole object,
but with lengths reduced by the factor 1/2 and “areas” reduced to 1/3 of their
original value. (This intuitive notion of area has to be made precise in the sense
of a measure, which would lead to a Hausdorff dimension of ln(3)/ ln(2) for the
ST.)

But what, the reader might ask, is the relation with the topic of this book,
the TH? For that one had to wait for the article [304] by Ian Stewart (cf. also
[306]). To understand this relation, the concept of a graph in connection with
puzzles has to be introduced.

0.4 Puzzles and Graphs

At an early stage, puzzles have been associated with the mathematical notion of
a graph. In fact, a puzzle is considered to be the launch pad for graph theory,
namely the famous Königsberg bridges problem; cf. [37, Chapter 1] and [340].

The Bridges of Königsberg

The topography of the ancient Prussian city with its seven bridges linking four
areas separated by the river Pregel led people to question whether it was possible to
make a promenade crossing every bridge exactly once and maybe even to return
to the starting point. The solution of this conundrum by L. Euler in 1735 was
intriguing for several reasons. Firstly, the answer was in the negative, i.e. such a
route is impossible, and secondly, this fact could be proved by a mathematical
argument. In modern terminology, the problem is to find a (closed) trail which is
eulerian, i.e. it contains all solid lines of the drawing of the multigraph depicted in
Figure 0.16, which is a visualization with vertices represented by dots and edges
by lines joining them. For instance, the line/edge c = {B,C} stands for a bridge
between the quarters of Königsberg represented by dots/vertices B and C; between
A and B there are multiple edges a and b.

Quite obviously, an eulerian trail may only be found if the (multi)graph has
exactly two vertices of odd degree or none at all if the trail is to be closed. This is
because every vertex has to be left as many times as it has been entered, except
perhaps for the start and end points of the tour. Comparing the tasks to finding
an eulerian circuit or just an eulerian trail in Königsberg, R. J. Wilson once said
of the latter that “it’s still impossible, but it’s easier” [342]. He was right, as can be
seen by looking into a letter of Euler to G. Marinoni (see [99, p. 155-157]; cf. also
[275] and [341, p. 504]), where Euler drew, apart from the bridges a to g of the

0.3. History of the Tower of Hanoi
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h

Figure 0.16: Königsberg multigraph drawn according to Euler [99, p. 153]

original question, an extra passage h between B and D and remarked that this
addition would allow for an eulerian trail, A and C then being the only vertices
of odd degree. An eulerian circuit would still need an extra bridge between A
and C, but Euler did not consider eulerian circuits. Actually, there was a passage
in Königsberg in Euler’s time at the location of h, called Holländischer Baum
(Dutch boom), later to become a railroad bridge; cf. also [2, p. 35]. Apparently
Euler learned about this passage from a letter by C. L. G. Ehler [275, Figure 2]
only after he had written his seminal paper on the bridges problem, which can be
found in [182, p. 279–288] (for an English translation, see [37, p. 3–8]). Eulerian
trails through the ages in Königsberg, or Kaliningrad as it is called today, can be
found in [225]. Euler did not consider the question of sufficiency of the obvious
necessary condition, which was eventually settled only in 1873 by C. Hierholzer
(cf. [37, p. 11f]).

An elegant constructive argument leads to Fleury’s algorithm (cf. [216,
p. 134f], [41, p. 87f]), which we will give here as an example of how algorithms will
be presented throughout the book.

Algorithm 1 Fleury’s algorithm
Procedure fl(G,a)
Parameter G: non-empty (connected) graph
Parameter a: initial vertex a ∈ V (G)

t← a {trail}
while deg(a) ≠ 0

choose any edge ab ∈ E(G), but avoid bridges, if possible
t← tb, G← G − ab, a← b

end while

We start at any vertex a of the (multi)graph G, repeatedly add an edge to
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the trail to be constructed and recommence at the other end vertex of that edge,
but avoid using a bridge of the currently examined graph (not to be confused with
the bridges in Königsberg, none of which is a bridge of the Königsberg graph)
unless there is no other choice. Edges traversed are deleted from the graph during
the process, G− ab being the graph obtained from G by deleting edge ab ∶= {a, b},
i.e. V (G − ab) = V (G) and E(G − ab) = E(G) ∖ {ab}.

It is easy to apply Algorithm 1 for the graph in Figure 0.16 (see Exercise 0.5)
and in fact it solves the general problem of finding an eulerian trail (circuit) and
can, e.g., be employed to show that, just like the well-known pentagram of the
Pythagorean school, the sign manual of Muhammad of Figure 0.17, showing two
opposing crescents, can be drawn in one stroke as according to legend (cf. [214,
p. 36]) the prophet had done in the sand with the tip of his scimitar; see Exer-
cise 0.6.

Figure 0.17: The sign manual of Muhammad

Every algorithm needs a correctness proof, i.e. an argument that it produces
after finitely many steps the result it was designed for. For Algorithm 1 we make
use of complete induction. The decisive step for an induction proof is the choice
of the appropriate statement depending on the induction variable. Here we claim
the following for any connected graph G and a ∈ V (G):

(A) If all vertices of G are even, then fl(G,a) produces an eulerian circuit
starting and ending at a.

(B) If a and c ≠ a are the only odd vertices of G, then fl(G,a) produces an
eulerian trail from a to c.

Here a vertex is called odd or even, depending on whether its degree is an odd
or an even number. We use the size m = ∥G∥ ∈ N0 of the graph as the induction
variable.

If m = 0, then G consists of the single vertex a whose degree is 0, such that
fl(G,a) will stop with t = a, the trivial eulerian circuit.
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Now let (A) and (B) be true for all non-empty connected graphs G′ with
∥G′∥ ≤m ∈ N0 and let ∥G∥ =m+ 1. Then deg(a) ≠ 0. In case (A), G has no bridge,
because its deletion would lead to two connected components with one odd vertex
each, but the number of odd vertices in a graph is always even as a consequence
of the so-called Handshaking lemma, which Euler formulated in his Königsberg
note (cf. Paragraph 16 in [37, p. 7]). If edge ab is chosen by the algorithm, then
G′ = G− ab is connected, has m edges and is in case (B) with a replaced by b and
c by a, such that, by induction assumption, the algorithm as applied to G′ results
in an eulerian trail b . . . a. Hence fl(G,a) produces an eulerian circuit ab . . . a. If
in case (B) the chosen edge ab is not a bridge, then G′ is connected, has m edges
and is in case (A) or (B) for b instead of a, depending on whether b = c or not,
such that fl(G,a) produces an eulerian trail ab . . . c as before. If, however, ab is a
bridge, then c lies in the component Gb of G′ which contains b, because otherwise
b would be its only odd vertex. Since the bridge was unavoidable, the degree of
a in G is 1 and Gb = G − a, the graph obtained from G by deleting vertex a and
its incident edge. But then, depending on whether b = c or not, we are in case
(A) or (B) for Gb and by induction assumption fl(G,a) yields a trail ab . . . c. This
completes the induction proof.

Note that one cannot drop the “avoid bridge” condition in Algorithm 1, be-
cause a component still containing edges which were not visited can never be
entered again after crossing a bridge. Moreover, if neither the condition in (A) nor
the one in (B) is fulfilled, the algorithm will nevertheless stop, because in every
recurring step one edge is deleted; the resulting trail will be non-eulerian though,
because these conditions are necessary for eulericity. The same applies if G is not
connected.

For a practical application we need, of course, an efficient method to decide
whether an edge is a bridge. This can be based on a breadth first search, as demon-
strated in Exercise 0.7. The number of steps needed depends polynomially on the
number of input data, and since Algorithm 1 can be viewed as a decision tool for
eulericity, the latter problem belongs to complexity class P (cf. [60, p. 87]).

The existence of such an algorithm has not (yet!) been established for an-
other famous problem, namely to find a hamiltonian path or a hamiltonian cycle
in a connected graph. (A graph that contains a hamiltonian cycle is called hamil-
tonian.)

The Icosian Game

W. R. Hamilton’s intention was rather more serious when he presented his Icosian
game (see Figure 0.18 for the original), “of which he was inordinately proud”
([37, p. 31]), in Dublin in 1857, and which was subsequently marketed by Jaques
and Son, London. It is said that Hamilton received £ 25 from the dealer, “the
only pecuniary reward ever accruing to Hamilton directly from any discovery or
publication of his” ([114, p. 55], and that it was a bad bargain—for the dealer!
([37, p. 31])
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Figure 0.18: Hamilton’s Icosian game
(courtesy of James Dalgety, http://puzzlemuseum.org)

© 2012 Hordern-Dalgety Collection

One type of tasks given in the leaflet of instructions (to be found, together
with examples and hints in [37, p. 32–35]) is to complete a cycle on the dodeca-
hedral graph (or Icosagonal as Lucas has called it in one of his scientific games)
in Figure 0.19 when 5 first vertices are prescribed using all other 15 vertices with
no vertex occurring more than once. (“Icosian” derives from the Greek είκoσι for
“twenty”.)

This graph is the 1-skeleton (a drawing of which being obtained by stereo-
graphic projection onto the plane) of the dodecahedron, one of the five Platonic
bodies. One can imagine a round trip through the 20 vertices of that body/graph
along the edges, never visiting a place twice. The use of the words “vertex” and
“edge” for the constituting elements of graphs now becomes transparent.

The purpose of the Icosian game was to popularize the Icosian calculus, which
Hamilton presented in two very short notes [125, 126] in 1856 as an extension to
his theory of quaternions. It is based on the Icosian group generated by ι, κ, λ

fulfilling
1 = ι2 = κ3 = λ5 and ικ = λ ≠ κι ;

obviously, this group is non-commutative. It has order 60 and is isomorphic to
the alternating group Alt5, the subgroup of the symmetric group Sym5 containing
only the even permutations of [5] = {1,2,3,4,5}, i.e. those which can be expressed
as the composition of an even number of transpositions; cf. [15, p. 29]. In this
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Figure 0.19: Dodecahedral graph with Hamilton’s labelling

interpretation one might put

ι ≅ 21435 = (12) ○ (34) = (12)(34) ,
κ ≅ 32541 = (15) ○ (13) = (135) ,
λ ≅ 23451 = (15) ○ (14) ○ (13) ○ (12) = (12345) ,

where the sign ≅ means that the symbols ι, κ, λ are identified with the correspond-
ing permutations σ in Alt5, given in the form σ = σ1σ2σ3σ4σ5, and alternatively
in cyclic representation showing only the cycles of the permutation, i.e. the cyclic
permutations on disjoint sets which make up the permutation. The group Alt5 in
turn is isomorphic to the rotational symmetry group of the dodecahedron, as can
be seen by looking, in Figure 0.20, at the 5 inscribed cubes whose 12 edges are
diagonals of the pentagonal faces of the dodecahedron (for details, see [15, p. 40]).

This allowed Hamilton to interpret his principal symbols ι, κ, λ to which
he added µ ∶= λκ ≅ 25413 = (12534), as operations (executed from left to right in
Hamilton’s convention; e.g., λκ ≅ 32541○23451) on the edges of the dodecahedron:
arriving at a vertex of a walk, ι means to go back on the edge just traversed, λ
means continuing on the edge to the right, and µ represents the corresponding left
turn. This is a complete description of walks on the dodecahedral graph which is
3-regular. For instance, ω ∶= λµλµλ = µλµλµ leads to the antipodal vertex. Cycles
being characterized by terms of the form γ = 1 in the Icosian group, Hamilton was
now able to identify the only cycles of order 20 which do not contain a strict
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Figure 0.20: Five cubes inscribed in a dodecahedron

subsequence of consecutive operations leading to a cycle; they are

(λ3µ3(λµ)2)2 (= 1), (0.9)

(µ3λ3(µλ)2)2 (= 1), (0.10)

differing only by exchanging left and right. (For an alternative approach to unique-
ness of these cycles see [218, p. 210–217].) Thus, starting with the edge from B to
C, Equation (0.9) produces the alphabetic path, whereas Equation (0.10) leads to

B C D F G H X W R S T V J K L M N P Q Z .

These are the only two hamiltonian cycles starting B C D F G. Now given any
path of length 4, i.e. given 5 initial vertices, the last 3 edges correspond to a triple
of symbols λ and µ. (The symbol ι cannot occur on a path and in fact, λ and µ

also generate the whole group alone, since ι = λµ4λ and κ = λ4µ.) All these triples
do actually occur in the terms of order 20 in (0.9) and (0.10) and can therefore be
continued, some of them even in two non-equivalent ways. So there are either two
or four solutions for every task; see Exercise 0.8. With 24 different initial paths of
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length 4 which start in B, say, 6 of which leading to two different completed cycles
each, we have 30 hamiltonian cycles on Hamilton’s dodecahedral graph. (We are
disregarding orientation of the cycles.)

Hamilton’s group theoretic approach has been employed, e.g., for symmetry
questions (cf. [326, Chapter 6] and [35]), but it can not be used to find hamilto-
nian cycles in general graphs. As said before, there is as yet no polynomial-time
algorithm to decide whether a graph is hamiltonian, although it is, of course, easy
to check if a walk in the graph, obtained by any kind of method, is in fact a
hamiltonian cycle. This is a typical feature of a problem of complexity class NP.
It can even be shown that it is NP-complete (see [336, Corollary B.11]), i.e. find-
ing a polynomial-time algorithm solving the decision would settle the outstanding
question “P=NP?”, one of the Millennium Prize Problems worth a million dollars
each; cf. [60].

Planar Graphs

Let us go back to old Königsberg and instead of crossing bridges draw a city
map with the four quarters Kneiphof (A), Altstadt/Löbenicht (B), Lomse (C), and
Vorstadt (D). They are separated from each other by the Pregel river as shown in
Figure 0.21, where we have added the dual graph, each quarter being represented
by a vertex, two of which are joined by an edge if these quarters have a border in
common. You may think of the centers of the areas which are pairwise connected
by roads running through the common border.

D

A

B

C

Figure 0.21: City map of Königsberg and its dual graph

The name dual for the graph associated with a map derives from the following
fact: if we define the center of each face of the dodecahedron to be a vertex and
join two such vertices by an edge if the corresponding faces share a common edge,
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we get the dual Platonian body, namely the icosahedron. In other words, the 1-
skeleton of the icosahedron is the dual graph of the 1-skeleton of the dodecahedron,
i.e. Hamilton’s graph in Figure 0.19, and vice versa.

Every map leads to a planar dual graph, i.e. its edges do not cross outside
vertices. This seemingly obvious fact (cf. [297, p. 168]) is actually rather subtle, but
we also want to skip the technical details about what a border is mathematically;
see [105] for topological details. Suffice it to say that a map can be viewed as a
graph as well, namely the dual graph of its dual graph. Its vertices are those points
where borders meet as in Figure 0.21, in which you have to think of an extra blue
vertex at the antipode of black vertex A, say, where the three open ending blue
edges meet. (In this picture, the whole plane or, by stereographic projection again,
the entire sphere belongs to Königsberg; if you want to include city limits, you
have to add three blue vertices and a black one together with the appropriate
edges to the drawing in Figure 0.21.)

As is conventional in cartography, two areas with a common border, in our
case a leg of the river, have to be colored with different colors. This is now equiv-
alent to coloring the vertices of the dual graph in such a way that two adjacent
vertices have different colors. But in the Königsberg graph every pair of the 4 ver-
tices is joined by an edge; this graph, which obviously needs 4 colors to be colored
properly, is denoted by K4. (K does not stand for Königsberg, but for complete
graph; C is used for cycle graphs.) The famous question is now: can every map,
or every planar graph for that matter, be colored properly with at most 4 colors
(cf. [37, Chapter 6], [297, p. 146])? Even before this question was posed for the
first time in 1852, A. F. Möbius asked whether a kingdom could be divided among
5 heirs, such that each of the 5 new countries has a border with every other one. If
this were possible, then K5, the complete graph over 5 vertices, would be a planar
graph which is not 4-colorable. So was the Four color conjecture refuted before it
was enunciated?

To answer Möbius’s question, we need another ingenious observation of Eu-
ler’s. If in addition to the number of vertices v and the number of edges e we also
count the number of faces f of a convex polyhedron7 or, which amounts to the
same, the corresponding numbers for its 1-skeleton (where we must not forget the
infinite face if its drawing is in the plane, which corresponds to the (finite) face
on the sphere containing the projection center), we get the amazing formula

v − e + f = 2, (0.11)

called Euler’s polyhedral formula and which is no less than a mathematical gem
(cf. [270, p. 65–73]). Its proof for (connected) planar graphs needs tools not avail-
able to Euler though, in particular the Jordan curve theorem (which is not named
for a river, but for the 19th century French mathematician C. Jordan), e.g., to

7In Euler’s time, mathematicians knew their classical Greek, according to which a polyhedron
has “many seats” and therefore had to be convex, otherwise it could not sit on them. Calling
non-convex solids “polyhedra” is a phantasm of later generations of mathematicians.
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show that an edge separates precisely two faces (cf. [241, p. 25]). Note that the
fact that (0.11) applies to all plane drawings of the planar graph G implies that
the number of faces f = ∣∣∣G∣∣∣ is the same for all drawings, because the order v = ∣G∣
and the size e = ∥G∥ of G are independent of the drawing.

We can use Equation (0.11) to prove that K5 is not planar: assume that K5

is planar; then 3∣∣∣K5∣∣∣ ≤ 2∥K5∥, because each face is bordered by at least 3 edges
(there are no loops nor multiple edges in the graph), each of which belongs to at
most 2 faces. (The latter again makes use of Jordan’s curve theorem!). From (0.11)
it follows that 10 = ∥K5∥ ≤ 3(∣K5∣ − 2) = 9, which is obviously a contradiction.

The fact that there are non-planar graphs led to a characterization of con-
nected graphs according to their (topological) genera, namely the value of g ∈ N0

such that
v − e + f = 2(1 − g) ,

where obviously g = 0 for planar graphs and, e.g., g = 1 for K5; of course, one has to
make precise what a face is for non-planar graphs (cf. [37, Chapter 5]). The quest
for the genus g(G) of a graph G turned out to be rather delicate. For instance,
a conjecture pronounced implicitly in 1890/1 by P. J. Heawood and L. Heffter
(cf. [37, Chapter 7]), namely that for complete graphs we have

∀p ∈ N0 ∶ g(Kp) = ⌈(p − 3)(p − 4)
12

⌉ ,

was proved not earlier than in 1968 by G. Ringel and J. W. Youngs; the complete
proof takes almost a whole book; cf. [271].

The genus of a non-planar graph G is related to the task to draw it without
a crossing of edges outside vertices on a surface of different topological type than
the plane (cf., e.g., [130, Chapter 10]). The other way out, namely allowing for
crossings in a plane drawing, but trying to keep their number small, is even more
intricate. The smallest such number, taken over all drawings, is called the crossing
number of G and denoted by cr(G). Contrary to the genus, it is, in general, easier
to obtain an upper bound for the crossing number by “simply” finding a good
drawing. It was, e.g., found out in the 1960s (cf. [122, p. 115]) that

∀p ∈ N0 ∶ cr(Kp) ≤ 1

4
⌊p
2
⌋ ⌊p − 1

2
⌋ ⌊p − 2

2
⌋ ⌊p − 3

2
⌋ . (0.12)

However, Guy’s conjecture that equality holds in (0.12), has not been confirmed
until today but for a small number of values of p “and in fact the proofs for
7 ≤ p ≤ 10 [cf. [122]] are very uncomfortable” ([130, p. 182]); for a computer-
assisted proof of the cases p = 11 and 12, see [251].

What does the answer to Möbius’s question tell us about the Four color
conjecture? Not much; just that colorability and genus are different matters. For
the history of the proof of the Four color theorem and the debate that it engendered
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because it was eventually obtained by the help of computers, see [297, Chapters 18–
23]. Many planar graphs are even 3-colorable (the test for (planar) 3-colorability
is again NP-complete; cf. [336, Theorems B.12,B.7]), and there are 2-colorable (or
bipartite) graphs which are not planar. (The test for 2-colorability is in complexity
class P; cf. [231, p. 288].)

For an example of the latter we take recourse to another famous puzzle,
the water, gas and electricity problem of H. E. Dudeney (cf.[37, p. 142f]): three
suppliers, for water, gas and electricity, have to be connected directly to three
consumers. The corresponding graph is called the complete bipartite graph K3,3,
because neither the suppliers are connected among each other nor are the con-
sumers. In Exercise 0.9 the reader is asked to decide whether the supply lines can
be layed out on the surface without crossings. Any graph which contains a subdivi-
sion of K5 or K3,3 cannot be planar. Kuratowski’s theorem says that this obvious
sufficient condition for non-planarity is also necessary (cf. [336, p. 246–251], [241,
Section 2.3]).

The minimum number of colors needed for a proper vertex coloring of a
graph G is called its (vertex) chromatic number χ(G). It is always at least as
large as the clique number ω(G), i.e. the order of the largest complete graph
contained in G as a subgraph. For the upper bound we employ a very interesting
type of algorithm, called greedy, because it always chooses the most profitable next
step without thinking further ahead: as long as there are still uncolored vertices,
choose any one of these and color it with the smallest possible color (colors being
labelled by natural numbers), i.e. one that has not yet been assigned to one of its
neighbors. This procedure stops after ∣G∣ steps, and the largest number used can
not be larger than 1 plus the maximum degree ∆(G) of all vertices of G, because
no vertex has more than ∆(G) neighbors.

Besides the vertex colorings, there are also edge colorings (cf. [297, Chap-
ter 16]), where adjacent edges must be colored differently, and total colorings
(cf. [348]) combining vertex and edge colorings. A theorem by V. G. Vizing says
that the edge chromatic number (or chromatic index) χ′(G) of a graph G, i.e. the
minimum number of colors needed for a proper edge coloring, must take on either
the value ∆(G) or, as already for G =K3, the value ∆(G) + 1 (cf. [336, p. 277f]).
For the corresponding question about the total chromatic number χ′′(G), the To-
tal coloring conjecture claims that it is either ∆(G) + 1 or ∆(G) + 2, as for K2.
The conjecture was independently posed in the 1960s by M. Behzad and Vizing;
see the book [297] of A. Soifer for a precise history. Specific labellings of (vertices
and edges of) graphs lead to other long-standing open questions, like the fanciful
Graceful tree conjecture (1964); cf. [336, p. 87f].

But let us now come back to problems where graphs provide the solution of
a puzzle.
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Crossing Rivers without Bridges

The most striking examples of how the modelling by a graph can transform a tricky
puzzle into a triviality come from the very old river crossing problems. They stem
from a time when Königsberg had no bridges and actually did not exist yet and can
be found, e.g., in the Latin collection Propositiones ad acuendos iuvenes, which
appeared around 800 and is generally attributed to Alcuin of York. Item number
XVIII is the propositio de homine et capra et lupo, which is well known as the wolf,
the goat and the cabbage problem. It involves a man who wants to cross a river
with these three passengers using a boat which can only carry himself and at most
one of the three. Moreover, one must not leave the wolf (W) with the goat (G),
nor the goat with the (bunch of) cabbage (C) without supervision. The question
is: how many one-way trips across the river are necessary to unite all of them on
the opposite river bank. The essential mathematical object is the set of passengers
who are alone, i.e. without the man, on one side of the river. Of the 8 possible
subsets only ∅, W, G, C, and WC, in obvious notation, are admissible. They form
the vertices of the graph in Figure 0.22, whose edges are single passages of the
boat and labelled with the symbols of the passengers during the trip.

G

C

W

W

C

G
WC

G O

O

Figure 0.22: The graph of the wolf-goat-cabbage problem

The task is now translated into finding in that graph a closed walk of odd
length including the vertex labelled ∅, because every crossing changes the river
bank. It is obvious that 7 one-way trips are sufficient and necessary and that there
are precisely two optimal solutions ∅–WC–G–C–W–G–WC–∅ and ∅–WC–G–W–
C–G–WC–∅.

Much more notorious is problem XVII of the Latin collection, namely the
propositio de tribus frateribus singulas habentibus sorores, which we call the careful
brothers problem (CB), avoiding the somewhat lurid and (therefore) more popular
name jealous husbands problem. It has found coverage over more than a thou-
sand years (cf. [104]), apparently without being properly solved until today; see
Exercise 0.10.

Let us mention in passing that another famous riddle can be found in the
Latin collection of Alcuin, namely his problem number XLII, propositio de scala
habente gradus centum: how many pigeons are there on a ladder with 100 steps
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whose first step is occupied by one pigeon, the second by two birds, and similarly
up to the hundredth step holding 100 pigeons; see Figure 0.23 for the example of
a four-steps ladder.

Figure 0.23: A ladder with 4 steps and ∆4 = 10 “pigeons”

The question is therefore to determine what for reasons obvious from the
figure is called triangular number ∆100 (or ∆4 in the picture). The general term
of the sequence ∆ν is defined as the sum of the first ν positive integers or, what
amounts to the same, of all natural numbers from 0 to ν ∈ N0. The solution given
in Alcuin’s text, interpreted for general even ν, is to redistribute all entries of the
sum into pairs of numbers k and ν − k, k ∈ [ ν

2
]
0
, such that only the number ν

2

remains unmatched, whence

∆ν = ν

2
⋅ ν + ν

2
;

for odd ν, the pairs (k, ν −k) for k ∈ [ν+1
2
]
0

match all entries of the sum, such that
altogether

∀ν ∈ N0 ∶ ∆ν = ν(ν + 1)
2

. (0.13)

A similar method is said to have been employed by the 9-years-old
J. F. C. Gauss when his school class was asked to add up the first 100 numbers.
Alas, this is just one of the most outstanding myths in mathematics history and a
deplorable example of how facts mutate through thoughtless copying of unreliable
sources. The only certain root of the anecdote is W. Sartorius von Waltershausen’s
account [280] written by a confidant shortly after Gauss’s death. Sartorius tells us
that he learned about the story from the old Gauss himself! In this description
[280, p. 12f] there is no mention of the sequence from 1 to 100, but of the “summa-
tion of an arithmetical series”, and there is also no reference to the kind of method
employed by Gauss to arrive at the solution which the young boy wrote down in
“a single number” immediately after the problem was hardly stated, turning in
his slate tablet with the words “Ligget se’.” (“Here t’lies.”). Therefore, the most
likely, albeit unromantic, explanation of the historical facts, if there were any, is
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that the young Gauss already knew formula (0.13), maybe from his own numerical
experiments. It is also not true, as claimed in some “popular” accounts, that after
the school hour was over all of Gauss’s school mates had gotten wrong results,
just many of the numbers submitted were false. As a note to modern pupils, and
authors of imagined accounts of historical stories for that matter, it should be
mentioned that they were “alsbald mit der Karwatsche rectificirt” (immediately
rectified with the bullwhip)! A much deeper result about triangular numbers was
established by Gauss only ten years after the school story. In his scientific diary
[108, p. 22] one can find, under the date 10 July [1796] Gött[ingen], the following
line

∗ ∗ EΥPHKA. num. = ∆ +∆ +∆ . ,

a very brief, but enthusiastic description of his discovery of a proof for a conjecture
which Fermat had announced (as a statement) in a letter to Mersenne 158 years
before, namely that every natural number can be written as the sum of three
(not necessarily equal) triangular numbers. (The proof can be found in Gauss’
Disqvisitiones arithmeticae (1801), Section 293.) This shows how long it might
take to settle a conjecture!

To emphasize the importance of triangular numbers, we note that every
n ∈ N0 can be written as n = ∆ν + x, where the index ν ∈ N0 and the ex-
cess x are uniquely determined if the latter is chosen in [ν + 1]0. We then have

ν = ⌊
√
8n + 1 − 1

2
⌋ , because from ∆ν ≤ n <∆ν+1 it follows that ν is the largest inte-

ger with the property ν(ν +1) ≤ 2n, and the desired formula follows by completing
the square.

With this, the mapping n↦ 1 + x
1 + ν − x is a bijective mapping from N0 to the

set of all positive fractions. This is the first diagonal method which G. Cantor
(cf. [48, § 1]) employed to prove that the set of rational numbers Q is countable.
We mention in passing that his famous second diagonal method introduced in [49]
to show that 2N is not countable, can be adapted for a proof of the uncountability
of the set of real numbers R which even works in binary representation; cf. [146].
To understand what “countable” means, however, one has to understand the notion
of equivalence.

0.5 Quotient Sets

The edges of a graph reflect a certain alliance between the corresponding vertices.
We may therefore call the edge set an association on the vertex set; cf. [148, p. 14].
A graph is then simply a pair G = (V,E) of a set V together with an association E

on it. Even if the sets V and E vary, they may lead to the same kind of structure.
We therefore want to make the notion of this isomorphy of graphs precise in this
section, which might be a bit more formal than the previous ones.
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0.5.1 Equivalence

In a chapter on “the beginning of the world” we must not omit the beginning of
the mathematical world, at least with respect to the standards we still use today
for writing mathematics. Beyond controversy, this is the “Elements” by Euclid.
The first axiom reads

Things which are equal to the same thing are also equal to one another.

Equality in this sense is the prototype of what we call in mathematics and in
every day life an equivalence. We not only apply it to objects which are identical,
but also if they have the same “value” agreed upon under fixed circumstances.
An example is a standard like the International Prototype Kilogram in Sèvres.
Euclid’s axiom reflects the property of equality to be “transitive”:

Definition 0.1. Let V be a set. A subset E of (V
2
) is transitive, if

∀{x, y, z} ∈ (V
3
) ∶ {x, z},{y, z} ∈ E ⇒ {x, y} ∈ E.

A transitive association is called an equivalence (on V).

Viewed as a graph, a set with an equivalence is just a union of independent
complete graphs. We agree upon the following

Convention. If E is an equivalence on V , we say that x ∈ V and y ∈ V are equivalent
(in symbols: x ≈ y) with respect to E, if either x = y or {x, y} ∈ E. ◻

This leads to the

Definition 0.2. Let E be an equivalence on V . For every x ∈ V , the set

[x] ∶= {y ∈ V ∣ x ≈ y} = {x} ∪ {y ∈ V ∣ {x, y} ∈ E}
is called the equivalence class (or equiset for short) of x in V (with respect to E).

Equivalence classes are not empty and cover all of V , since ∀x ∈ V ∶ x ∈ [x],
and two of them are either equal or disjoint because of transitivity. Therefore the
quotient set V /E ∶= [V ] = {[x] ∣ x ∈ V } (sometimes also written as V / ≈) is a
partition of V . In fact, equivalences and partitions are just two sides of the same
coin:

Theorem 0.3. There is a bijection between the set of partitions of a set V and the
set of equivalences on V .

Proof. Let P be a partition of V . Define the (surjective) mapping p ∈ PV by
x ↦ X , where the latter set is the unique element of the partition containing x.
Then E = {{x, y} ∈ (V

2
) ∣ p(x) = p(y)} is an equivalence on V . We claim that the

mapping P ↦ E is the desired (canonical) bijection.
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It is surjective because every equivalence E is the image of its quotient set.
Now assume that P and P ′ are mapped to the same E. Let X ∈ P and x ∈X . (This
is the only place where the non-emptiness of elements of P is needed!) Then there
is also an X ′ ∈ P ′ such that x ∈ X ′. It follows that X = p(x) = [x] = p′(x) =X ′. This
proves that P ⊂ P ′. In the same way one shows that P ′ ⊂ P , whence P = P ′. ◻

For every set V there is the strict partition with E = ∅, where two elements of
V are equivalent only if they are equal, as, for example, (hopefully) for the finger-
print test on the set of human beings. The other extreme, namely E = (V

2
), leads

to the trivial partition where all elements of V are equivalent; example: Article 1 of
the Declaration of the Rights of Man and of the Citizen of the French Revolution:
“Men are born and remain free and equal in rights.”; here the distinction between
equality and equivalence is made precise by the words “in rights”. (Men are quite
obviously not equal!)

The most important mathematical example for an equivalence leads to the
cardinality of sets. Two sets X and Y are said to be equipotent, in symbols X ≈ Y ,
if there is a bijection between them. For instance, a set is called countable, if it is
either finite or equipotent to the set of natural numbers N (or N0 for that matter).
The notation [n] is now also justified, because {1, . . . , n} is a representative of all
(finite) sets containing precisely n elements. In general, if an individual element
of an X ∈ [V ] is chosen, it is called a representative of X . We have the following

Lemma 0.4. Let V be a non-empty, finite set. Then

1 ≤ ∣[V ]∣ = ∑
x∈V

1

∣[x]∣ ≤ ∣V ∣ .

Equality on the left side holds only for the trivial, on the right side only for the
strict equivalence.

Proof. ∣V ∣ = ∑
x∈V

1 ≥ ∑
x∈V

1

∣[x]∣ = ∑X∈[V ] ∑x∈X
1

∣[x]∣ = ∑X∈[V ]1 = ∣[V ]∣ ≥ 1 . ◻

The strict equivalence is the only objective one, all the others are subjective in
the sense that (a group of) people agree on an equal value of non-identical objects.
A typical example is given by the Euro coins. The European Central Bank declares
all 2 Euro coins, say, issued by the national authorities of participating countries
as equal in monetary value. For collectors, however, the 2 Euro coin from Monaco
of 2007 showing a portrait of Princess Grace is of totally different value than an
ordinary coin of Germany, say. So the individual coins to be found in one and the
same pocket of a supermarket cash register, the equivalence class of the monetary
value, can be in quite different classes with respect to collectors’ values.

A more mathematical example is the following.

Example 0.5. Let V = Z and E = {{m,n} ∈ (Z
2
) ∣ m ⋅ n > 0}. Then E forms an

equivalence on V , the equivalence classes being the sets of positive and negative
integers, respectively, and {0}.
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This example shows that our definition of an equivalence is more appro-
priate than the traditional one as a reflexive, symmetric, transitive relation,
which one can view as the third side of the coin: it is, of course, rather cir-
cuitous to regard ordered pairs and then ask for symmetry; moreover the sym-
metric and transitive relation {(m,n) ∣ {m,n} ∈ E} corresponding to Example 0.5
would not be an equivalence relation, because it is lacking reflexivity. (In fact,
all symmetric and transitive relations R on a set V have the property ∀x ∈ V ∶
((x,x) ∉ R⇔∀y ∈ V ∶ (x, y) ∉ R); therefore, R = R ∪ {(x,x) ∣ x ∈ V } forms an
equivalence relation, and E = {{x, y} ∣ (x, y) ∈ R, x ≠ y} is an equivalence.) On
the other hand, the partition of Z into the three equivalence classes according to
our definition makes perfect sense. In other words, equivalence (and graph for that
matter) is a more fundamental notion than relation.

Example 0.5 can also be used for intractable students, for it has the following
consequence.

Corollary 0.6. {0} ≠ ∅.8
Proof. Equivalence classes are not empty. ◻

With respect to graphs, we will now call two graphs G = (V,E) and G′ =
(V ′,E′) isomorphic, in symbols G ≅ G′, if there is a bijection ι ∶ V → V ′ which
is compatible with the graph structure, i.e. {v1, v2} ∈ E ⇔ {ι(v1), ι(v2)} ∈ E′.
Similarly, the notion of isomorphy of groups, which we encountered in Section 0.4,
can now be defined more precisely as an equivalence based on group structure
preserving bijections between the underlying sets.

0.5.2 Group Actions and Burnside’s Lemma

Groups being associated with symmetries, e.g., of geometrical objects or graphs,
we will need in later chapters some tools, among which is the so-called Lemma of
Burnside. We want to present these statements right now, since they follow in an
elementary way from the facts in the previous subsection. Because of its technical
nature, this subsection might be skipped and returned to when needed.

Let X be a set and (Γ, ⋅ ,1) a group. A group action of Γ on X is a mapping
Γ ×X →X , (g, x) ↦ g.x, with the property that for all x ∈X :

1.x = x ∧ ∀g, h ∈ Γ ∶ (g ⋅ h).x = g.(h.x) .
We define

∀g ∈ Γ ∶ Xg ∶= {x ∈ X ∣ g.x = x} ,
∀x ∈ X ∶ Γx ∶= {g ∈ Γ ∣ g.x = x} ;

8This not only shows that zero is not nothing, but it also offers an explanation why the
symbol ∅ is used for the empty set, meaning that not even zero is in it; cf. [162, p. 211]. It was
introduced by A. Weil because of its typographical availability from the Norwegian alphabet;
cf. [335, p. 119].
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Xg is the fixed point set of g, and Γx is called the stabilizer of x. A typical combi-
natorial technique to count the same set, namely {(g, x) ∈ Γ×X ∣ g.x = x}, in two
different ways immediately leads to

Lemma 0.7. If Γ acts on X, then

∑
g∈Γ

∣Xg ∣ = ∑
x∈X

∣Γx∣ .

Calling Γ.x = {g.x ∣ g ∈ Γ} the orbit of x, we are able to prove the important
Orbit-Stabilizer theorem.

Theorem 0.8. If Γ acts on X, then

∀x ∈X ∶ ∣Γ∣ = ∣Γ.x∣ ⋅ ∣Γx∣ .
Proof. Let x ∈ X . Obviously, a ≈ b⇔ a.x = b.x defines an equivalence on the set
Γ. Each equivalence class has the form Γ̃y ∶= {c ∈ Γ ∣ c.x = y} for some y ∈ Γ.x,
and Γ̃y ≠ Γ̃z, if y ≠ z ∈ Γ.x. Therefore, ∣Γ∣ = ∑

y∈Γ.x

∣Γ̃y ∣, and it suffices to show that

∀y ∈ Γ.x ∶ ∣Γ̃y ∣ = ∣Γx∣.
For some γ ∈ Γ̃y we define a mapping Γx → Γ̃y by g ↦ γ ⋅ g. This mapping is

obviously injective. Now let c ∈ Γ̃y. Then

(γ−1 ⋅ c).x = γ−1.(c.x) = γ−1.y = γ−1.(γ.x) = (γ−1 ⋅ γ).x = 1.x = x ,
whence γ−1 ⋅ c ∈ Γx. So the mapping is also surjective. ◻

We finally define an equivalence on X by x ≈ y⇔ y ∈ Γ.x. The corresponding
equivalence classes are [x] = Γ.x, and the quotient set [X] is also called the factor
set X/Γ of X with respect to Γ. We arrive at Burnside’s lemma.

Corollary 0.9. If Γ acts on X, then

∑
g∈Γ

∣Xg ∣ = ∣Γ∣ ⋅ ∣X/Γ∣ .

Proof. ∑
g∈Γ

∣Xg ∣ = ∑
x∈X

∣Γx∣ = ∑
x∈X

∣Γ∣
∣Γ.x∣ = ∣Γ∣ ∑x∈X

1

∣[x]∣ = ∣Γ∣ ⋅ ∣[X]∣ , where use has been

made of Lemma 0.7, Theorem 0.8, and Lemma 0.4 in that order. ◻
We will apply Theorem 0.8 and Corollary 0.9 mainly to the automorphism

group (Γ, ⋅ ,1) = (Aut(G), ○ , id) of a graph G = (V,E), where Aut(G) is the set
of isomorphisms from G to G, ○ stands for the composition of two such mappings,
and id ∶ V → V, v ↦ v, is the identity mapping on V .
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0.6 Early Mathematical Sources

For a serious examination of problems from recreational mathematics there is a
BL and an AL—before Lucas and after Lucas. There is apparently no BL for TH
and BL sources for CR are rare and mostly obscure.

0.6.1 Chinese Rings

Pacioli’s account [250, p. 290–292] contains a description of a solution to get all
rings onto the bar from an initial situation where they are all off. Although he sets
out from an arbitrary number of rings, his explanations stop as soon as the 7th
ring is on the bar, when he writes “e’ cosi sucessiue” (and so on).

Other early Western sources became known through the pamphlet [119] of
Gros from 1872 which in turn became known through the book [209] of Lucas
in 1882. These are Cardano’s passage mentioned before and the somewhat more
substantial Chapter 111 entitled De Complicatis Annulis in J. Wallis’s famous
treatise on algebra [330, p. 472–478] from 1693. Wallis starts off from the state
where the bar and the system of nine rings are separated. As a goal he specifies
the state with all rings on the bar, but it is remarkable that in his step by step
description of how to put on the rings he ends in the most deranged state (“in
implicatissimo statu”), i.e. with the ninth ring on, all others off the bar. In his
account on Wallis’s solution, Gros is not quite fair; in fact, in a hand-written
annotation from 1884, to be found on the copy of [119] which is at our disposition,
the author offers a reason why: “Wallis has been so unjust with respect to French
mathematicians that it is well permitted to shut him up [river ses clous] on the
subject of the baguenodier.” It is true that Wallis complicated his explanations
unnecessarily by a dissection of what we call a move, i.e. the change of a single
bit in the representation of the states, into separate movements of rings and the
bar to the effect that a move of the outer ring needs 2, the move of any other
ring 4 movements. On the other hand, this simplifies his calculations. So he finds
that in order to get n ≤ 9 rings onto the bar, one needs ∑n

k=1 2
k = 2n+1 − 2 of

his movements. In a last step he adds another 29 − 1 movements to arrive at his
most deranged state in altogether 1533 movements. As we will see, this number is
correct, but it contains unnecessary movements.

Gros is also unjust to Cardano, a fact to which we will return later. However,
the mathematical analysis of Gros is much better, and we will follow his model
(with respect to mathematics proper) in Chapter 1.

Wei Zhang and Peter Rasmussen have found the (so far) earliest Chinese
treatment of the jiulianhuan, which appeared around 1821 in Xiao hui ji (“Little
wisdoms”,小慧集) by Zhu Xiang Zhuren (贮香主人). In Figure 0.24 one can see a
pictorial representation of the game, and the two tables describe a method to get
the nine rings off the bar. We will explain this solution in Chapter 1.
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Figure 0.24: Pages 14r to 17v from Xiao hui ji, book III (ca. 1821) by Zhu Xiang
Zhuren (the insert in the center shows an extra comment on page 14v); from
the Yi Zhi Tang collection of traditional Chinese puzzles. For more information:
http://ChinesePuzzles.org

© 2012 Wei Zhang and Peter Rasmussen
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0.6.2 Tower of Hanoi

Mathematicians are working on the theory of the TH on the authority of the bible,
where in the Gospel according to—whom else?—Luke, we find:

WhiĚ of you, intending to build a tower,

sitteth not down firĆ, and counteth the coĆ?
Luke 14:28

Following this commandment and attracted by the divine elegance of the TH,
mathematicians developed a theory of the puzzle almost instantly after its publi-
cation and so it made its first appearances in mathematical literature very early
on. Still in 1883, G. de Longchamps gives an account in [202], concentrating on
the sequence Mn. Claus de Siam himself, in his 1884 article [59] mentioned ear-
lier, presents the first description of a non-recursive solution, namely to move the
smallest disc rotationally over the three pegs, alternating with moves of other discs
forced by the divine rule. This strategy, which we will develop in Section 2.1, is at-
tributed to Raoul Olive, a pupil of the Lycée Charlemagne (in Paris) and nephew
of Édouard Lucas. Moreover, as already on the leaflet [58], a second problem is
proposed in [59], namely to start with an arbitrary distribution of the discs among
the three pegs. This will be studied in Section 2.2 and in its most general form
in Chapter 3. Finally, [59] points out the intimate relations between the TH and
permutations, combinations and the binary number system and anticipates modi-
fications of the game and its rules to represent all number systems and recurrences
in general. It is even announced that another game will be published to illustrate
the famous theorem of Charles Sturm of 1829 concerning the number of roots of
a real algebraic equation in a given interval.

The TH immediately spread outside France. The article [3] by R. E. Allardice
and A. Y. Fraser was published in 1884 in Volume II of the Proceedings of the Ed-
inburgh Mathematical Society, actually its first volume to appear (cf. [268, p. 140]),
and contains a verbal repetition of de Parville’s account–in French! Obviously, in
those times, Scottish scholars were well-educated. In [3, § 2] the recursive solu-
tion is repeated and the observation disclosed that during this solution every disc
moves a power of 2 times, according to its size. Also, in [3, § 3], the cyclic pattern
of moves is described.

Although these early sources contain the essential mathematical statements
about the classical TH problem, they are lacking convincing proofs. This changed
with the thoughtful analysis of Schoute in [286]. Stimulated by the publication of
Lucas’s Récréations mathématiques [209], Schoute wrote a series of “Wiskundige
Verpoozingen” (mathematical relaxations) in the popular Dutch journal Eigen
Haard between 1882 and 1884 (cf. [42]); among these are articles on the CR and the
binary number system to which the author relates his most original contributions
on the TH. Obviously starting off from a German version of the puzzle, which had
the discs colored black (the smallest) or red in alternation, he states a number
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of results, some of them followed by serious proofs. Apart from the facts already
known before, he makes use of the coloring of the discs (and the bottoms of pegs,
only the intermediate one carrying the same color as the largest disc) to devise
a new realization of the classical solution, namely never to place a black disc on
another black one (or bottom) and never to undo a move just performed. The most
outstanding result, however, is an algorithm [286, p. 286f] which determines the
number of steps (in binary) made on the path of the classical recursive solution
to arrive at a given configuration. We will present this recipe in Section 2.1.

After that there has been no progress on the classical TH problem for about
sixty years. The paper [290] by R. S. Scorer, P. M. Grundy, and C. A. B. Smith
was the first to add some mathematical structure to the game by looking at it
in the shape of the state graphs, which we now call Hanoi graphs. They derive
typical graph theoretical properties like planarity and edge colorings and even an-
ticipate what we will investigate under the name of Sierpiński graphs! Moreover,
the authors, like Lucas in the first publication of the TH under his true name [215,
p. 55–59], written in 1884, again stressed the value of the TH as representing the
formation of numbers in the binary system, and showed the way to more challeng-
ing tasks arising from more general starting configurations and the introduction
of variations, also including further pegs.

Missing Minimality, False Assumptions and Unproved Conjectures;

The Reve’s Puzzle

Virtually all early papers on the topic of the TH (re)produce the classical recursive
solution together with the number of moves involved. What they do, however, is
just provide an upper bound for the minimal number by proving that the task can
be achieved using that many steps. It is one of the mysteries in the mathematical
theory of the TH that apparently nobody felt the necessity to give a lower bound,
i.e. to prove that there is no better solution, until 1981, when D. Wood presented
the first minimality proof in [345, Theorem]! Even today, this proof is missing
from most texts and some authors even do not understand where the problem lies
(cf. [147]). The crucial point is the assumption that the largest disc will move, in
an optimal solution, directly from its source to its target peg or, in other words,
it moves precisely once. Even if this seems to be evident, a mathematical proof
of minimality can not be based on an unjustified assumption. In fact, the proof is
easy and so we will already give it here.

Theorem 0.10. An optimal solution for the TH with n ∈ N0 discs can be achieved
in, but not in less than, Mn moves.

Proof. The proof is by induction. The statement is trivially true for n = 0. It is
also clear that if the task can be done for n discs in Mn moves, it can be done for
n+ 1 discs in Mn + 1+Mn = 2Mn + 1 =Mn+1 moves by transferring the n-tower of
smaller discs to the intermediate peg, then disc n + 1 to the goal peg and finally
the n others to the goal too.
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Before the first move of disc n+1 in any solution, a tower of n discs has to be
transferred from the source peg to another one, which takes at least Mn moves by
induction assumption. After the last move of disc n + 1 again an n-tower changes
position from some peg to the goal peg, consuming another Mn individual disc
moves. Since disc n+1 has to move at least once, the solution needs at least Mn+1

steps. ◻
The second half of the argument in the preceding proof shows that a solution

with more than one move of the largest disc is longer than the solution in the first
part of the proof. That is, in an optimal solution first and last move of the largest
disc coincide. This move being mandatory, it follows, again by induction, that the
sequence of moves of the optimal solution is unique.

The proof of Theorem 0.10 can be viewed as the beginning of a serious
mathematical treatment of the TH 100 years after its invention.

The consequence of Theorem 0.10 for the Tower of Bramah (sic!), i.e. the case
of M64, the number given in (0.1), has been chosen by W. H. Woodin in [347, p. 344]
as a paradigm for the philosophical implications (and those for mathematical logic)
of a true sentence whose ultimate effective proof would be coincident with the end
of the world.

Unfortunately, mathematical progress on the TH did not come smoothly. The
assumption that the largest disc moves only once was thoughtlessly carried over
to a generalization of the problem, namely starting from an arbitrary legal initial
distribution of the discs, but still heading for a perfect tower on a preassigned peg.
Although an argument as for Theorem 0.10 will show that this assumption is still
justified, it fails as soon as also the target state may be chosen arbitrarily, because
in that case the last move of the largest disc might not be followed by the transfer
of a complete tower consisting of the smaller discs. When Wood tried to design
rules for adjudicating a two or more person game based on the TH in [346], he
failed to recognize this fallacy and claimed in his Theorem 3 the uniqueness of the
optimal solution based on the false assumption. A (very simple) counter-example
was published by M. C. Er in [95]. However, he himself fails to avoid the error
in his algorithm for the general case in [93], where he wrongly claims minimality,
which in some cases can only be achieved making two moves of the largest disc.
This mistake was repeated over and over again in literature, also by P. Cull and
C. Gerety in [64], a paper which we only cite because of its really designative title!

A serious mathematical analysis of this issue was performed by X. Lu in [204],
where the author gives a(n equally simple) counter-example (already to be found
in 1982 in [317]!) to another statement of Wood’s [346, Lemma 5] which claims
that specific intermediate states, namely with all but the largest disc on the peg
different from initial and final position of the latter, are unavoidable in an optimal
path, which is essentially equivalent to the assumption that the largest disc moves
only once. Lu’s approach is also based on unavoidable intermediate states of the
puzzle and depends on descriptive arguments deduced from the Hanoi graphs, an
expression Lu introduces on this occasion.
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The first explicit extension of the classical puzzle to four pegs is given in the
book [78] written by Dudeney,9 who took up G. Chaucer’s idea of The Canterbury
Tales, but changed the tales narrated by pilgrims meeting at night at the old
Tabard Inn in Southwark into puzzles. The first of these he called The Reve’s
puzzle.10 Dudeney writes [78, p. 1]: “There are certainly several far more difficult
puzzles extant, but difficulty and interest are two qualities of puzzledom that
do not necessarily go together.” He erred with respect to The Reve’s puzzle! In
the story he tells, diamond needles and golden discs are replaced by stools and
loaves of cheese, respectively. Although this might be appropriate for an English
tavern, it strongly reminds us of the words of Ball (see p. 2). Dudeney proposed
(unique) solutions [78, p. 131f] for the cases of 3, 4, and 5 stools for natural,
triangular, and tetrahedral numbers (ν+0

1
), (ν+1

2
), and (ν+2

3
) of cheeses, respectively,

and summarizes the lengths in a table. However, he fails to prove correctness and in
particular minimality of his procedure. As it stands, the prize The Reve offered for
an optimal solution, namely “a draught of the best that our good host can provide”,
is still to be won. This situation did not change with the problem being taken up
as a challenge by B. M. Stewart to the readers of The American Mathematical
Monthly of 1939 [302], because his own solution [303] and the one by J. S. Frame
[103] were both based on a certain unproven assumption which the editor of the
journal, O. Dunkel, framed into a lemma [80]. We will discuss what we now call
the Frame-Stewart conjecture in Chapter 5.

“No more articles on the Towers of Hanoi for a while.”

During the 1970s the TH was (re-)discovered by computer scientists. The classical
task to transfer a tower of n discs from one peg to another was considered as a pro-
totype of the divide-and-conquer paradigm, namely to cut a problem into smaller
pieces and solve the latter successively. Mostly unaware of the mathematical the-
ory of the TH, articles galore appeared whose sole intention was to provide ever
more sophisticated algorithms to produce the list of moves in the solution known
by Lucas and Olive since 1883, which is unique as we know from the remark follow-
ing the proof of Theorem 0.10. Originally mainly used to demonstrate the power
of recursive approaches in computer science textbooks, a discussion was initiated
by P. J. Hayes concerning the “best” algorithm—recursive or iterative. Although,
as the author explicitly admits in his “disclaimer”, there was nothing new about
the TH and its solution, his paper [132] is probably the most cited of all articles
on the TH whose most remarkable innovation was to introduce a plural “s” to
Lucas’s tower, which now allows us to distinguish easily between publications on
the topic from computer scientists and those of more respectful mathematicians.
We will ignore this plural form throughout the text except in the references.

9In fact, Dudeney first published the puzzle in 1902 in some London newspapers and repro-
duced it in the book mentioned.

10This was Oswald of Norfolk in Chaucer’s work. The re(e)ve was a kind of official for a
county; today we meet this word in sheriff=shire-reeve.
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Nevertheless, the flood of articles and notes, mainly in The Computer Jour-
nal, Information Processing Letters, and the ACM SIGPLAN Notices, produced a
wealth of mostly empirical observations on the properties of the solution. We will
encounter them, together with proofs, in Section 2.1. Striking are the exchanges
of letters to the editors, at times fierce and personal in tone, for instance in The
Computer Journal between 1984 and 1986, when the TH was attacked as “a trivial
problem” [134].

This was caused by a series of rather redundant articles, at least two of which
[92, 94] being identical word by word, by Er from 1982 to 1991, in which the author
developed some, mostly algorithmic, properties of the TH and its growing number
of variants.

Finally, in 1985, the editor of the ACM SIGPLAN Notices arrived at the end
of his tether and declared [337]: “Towers of Hanoi. Please, no more articles on this
for a while.”

The Presumed Minimal Solution for The Reve’s Puzzle

The same hype occurred in computer science literature about The Reve’s puzzle.
The solutions of Stewart and Frame, essentially equivalent and which have hitherto
been called the presumed minimal solutions (cf. [140, p. 134]) in view of the lack
of a minimality proof, were studied under algorithmic aspects. Many of these
papers include claims of optimality, like, e.g., [222]. From the mathematical point
of view, however, earnest contributions to clarify the Frame-Stewart conjecture in
the second half of the 20th century have been rare.

The First Serious Papers

Although the good, the bad and the ugly can be found in all categories of hu-
man endeavor, the latter two outnumber the first by far with respect to the TH.
However, a more serious examination of the mathematical theory of the TH began
with the works of Wood [345], Lu [204], T.-H. Chan [52], and the seminal paper
by A. M. Hinz [141]. The decade culminated with the most amazing quantita-
tive connection between the TH and the ST in [155]. The majority of (proven)
results which we will present in Chapters 2 and 5 originate in subsequent years.
The growing scientific interest in the topic became manifest with the first “Work-
shop on the Tower of Hanoi and Related Problems”, held in Maribor (Slovenia) in
2005. A multidisciplinary meeting “La «Tour d’Hanoï», un casse-tête mathéma-
tique d’Édouard Lucas (1842–1891)” in 2009 brought together mathematicians,
psychologists and historians of science in Paris. The poster entitled “From London
to Hanoi and back—graphs for neuropsychology” by Hinz won a Second Prize at
the International Congress of Mathematicians 2006 in Madrid. It presented the
activities of a research project to employ the TH in a computerized test tool for
cognitive psychology; cf. [151].
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Psychology, Variations, Open Problems

The TH entered the literature of psychology as early as 1897, when E. H. Lindley,
wondering “... how myth and legend tend to cluster about puzzles, ...”, called the
TH, which he groups, together with the CR, into the category of more complex
mechanical puzzles, a “familiar mechanical problem” [195, Chapter II]. It turned
out to be a valuable tool in cognitive tests because of its attractive aspect, the
easy-to-explain rules, the possibility for the experimenter to watch subjects think,
and the fact that the average test person does not dispose of a priori special
purpose subroutines. It was used in the 1920s by J. Peterson and L. H. Lanier in
experimental studies trying to discern the cognitive abilities of black and white
children and adults in the United States of America (cf. [257]) in an attempt to
decide between genetic and environmental causes for possible differences. At the
same time, W. S. Hunter reports [157, p. 331–333] on tests made with college
students who were not only asked to develop a solution strategy, but also to “write
the equation which will give the least number of moves required to solve the
problem for any number of discs.” He calls the TH a “very interesting example of
the development of scientific thinking”. Among the numerous studies of that kind
we only mention tests with children of ages between 5 and 12 by J. Piaget and
A. Cattin [260] which distinguish between different phases of capability to solve
the puzzle and to generalize and explain its solution.

A heuristic analysis of solution strategies was undertaken by H. A. Simon in
[294] which influenced both the psychological and the artificial intelligence com-
munities. Simon distinguishes four types of strategies: goal-recursion, perceptual,
sophisticated perceptual, and move pattern based. The first is the classical recursive
method, the last is Olive’s solution, while the intermediate ones are based on a
step-by-step analysis by the problem solver. Memory requirements are forbidding
for the recursive solution and low for Olive’s. Simon points out that the perceptual
strategies have the advantage to allow for a restart, i.e. can be employed even if
the initial state is not a perfect tower. In any case, the assumption of one move of
the largest disc is made throughout. D. Klahr remarked in 1978 [166] that there
might be two solutions for tasks involving flat states, i.e. those where discs are
lying on mutually different pegs, in the TH with 3 discs. In [167, p. 139] it was
even noticed, five years before Lu, that the one-move strategy fails in some tasks
to produce a minimal solution. The reason, however, was not well understood, and
it must be said that most studies using the TH in psychology lack a mathematical
backing. To avoid complications, subjects were even told not to make more than
one move with the largest disc; cf. [13]. This is most surprising because the correct
state graph for the puzzle was well-known in psychological literature by 1965 (see
[151, Section 0.1.1] for the history).

Although some psychological studies did consider more general tasks than
the classical perfect-to-perfect game, you hardly find any such task in today’s
numerous interactive applets on the internet. This misconception of a missing
variability of the TH specifications may also have led T. Shallice to invent a variant
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of the “look-ahead puzzle” which he called The Tower of London (TL) [291, p. 205]
(see [151, Section 0.1.2] for the history). The game with three pegs of different
heights is played with colored, but otherwise identical balls instead of discs, and
therefore does not apply anything like the divine rule. It will be explained in detail
in Chapter 7 because, although in itself rather simple, its generalizations lead to
very interesting mathematics.

Variations of the TH weakening or violating the divine rule or otherwise
relaxing the concept of a move have been introduced throughout its history, and
we will again only consider those with a strong mathematical context. One of these,
the Switching Tower of Hanoi (STH), was in fact introduced by S. Klavžar and
U. Milutinović in [169, p. 97f] on a purely mathematical base, namely to illustrate
the class of Sierpiński graphs to which our Chapter 4 will be devoted. The latter,
in turn, are variants of Hanoi graphs which at times allow us to study properties
of these in a more straightforward way. Other variations of the TH will be studied
in Chapter 6, starting with those already proposed by Lucas in [210]. Finally, a
last group of variants, initiated in [290], will be addressed in Chapter 8. Here the
possibility to move between pegs is restricted, but usually with the divine rule in
force.

To get an impression how varied the applications of the divine rule are, let
us only mention that it might serve, as pointed out by H. Hering in [135, p. 411],
as a model for shunting railway cars on three tracks merging into one without
changing the order of the cars. Another instance is the question whether a given
permutation can be sorted by a passage through a single stack. Permutations that
allow such a sorting were described by D. Knuth and are sometimes called Catalan
permutations. In this problem no integer can be placed on top of a smaller integer
in the stack, which is just the divine rule! We refer to [121] for more information
on this (and related) problem(s).

The principal practical application of the TH remains, however, the testing
in cognitive psychology. In order to put these experiments onto a firm and reliable
fundament, the mathematical theory of tower tasks has been presented in [151]
together with the description of a computerized test tool based on it. The special
role played by the corresponding state graphs has been stressed in [148], where
also a misconception to be found in some psychology papers has been addressed,
namely to mistake these graphs for what A. Newell and Simon have called in [244]
the problem space of a task. The latter concept takes in more than the sheer math-
ematical structure of the problem manifest in the graph. The crucial point is the
distinction between isomorphy and equivalence. As pointed out in Section 0.5.1,
the concept of equivalence requires a subjective agreement on some “value”. The
isomorphy of graphs is just one of those possible values, and two puzzles will be
considered to be mathematically equivalent if their corresponding state graphs
are isomorphic. This means, e.g., that whenever a solution has been found for one
of the isomorphs, a solution for the other can be deduced mathematically. This
does not imply, however, that both tasks are equally easy or difficult to solve for
a human being. For instance, it has been felt that color coding of differences of
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discs is easier to perceive than sizes and so the Tower of Toronto in [277] replaces
diameter by shading, disallowing darker discs to be placed on lighter ones. A more
striking example is Monsters and Globes from [186, p. 251] as discussed in [148],
where the TH problem is administered in a way to switch the roles of static and
dynamic components of the puzzle to the effect that even those familiar with the
solution to the TH are hardly able to solve the variant. We will meet a similar
problem isomorph in connection with the CR. Therefore, these variants, although
mathematically equivalent, are not equivalent psychologically. If one would take
into account only mathematical equivalence, even (Argentine) ants would be able
to solve the TH; cf. [269]!

Other problems in this book will be too difficult for them, but suitable for
readers on all levels of ambition. The most challenging ones, namely those which
are still open to be resolved, are summarized in the final chapter which may last
until the end of the world brought about by the Brahmins.

0.7 Exercises

0.1. Solve the recurrence equation in (0.4), i.e. xn+2 = xn+1 + xn, by the ansatz
xn = ξn for some ξ ∈ R and write Fn and Ln as linear combinations of these
particular solutions. Show that the ratios Fn+1/Fn and Ln+1/Ln tend to the
Golden section (1 +√5)/2 as n→∞.

0.2. For k ∈ N0 we write [k] ∶= {1, . . . , k}, [k]0 ∶= {0, . . . , k−1} for the k-segments
of N and N0, respectively. This leads to a proper definition of the size of a
set M , denoted by ∣M ∣: we say that M is finite and has size ∣M ∣ ∶=m ∈ N0, if
there is a bijection from M to [m]. That this notion is well-defined follows
from the pigeonhole principle.

We define

∀k, ` ∈ N0 ∶ (k
`
) = ∣([k]

`
)∣ .

Moreover, let k! (k factorial) be defined by the recurrence

0! = 1 ∀k ∈ N0 ∶ (k + 1)! = (k + 1) ⋅ k! .
This is well-defined by the Fundamental theorem of recursion (cf. the solution
of Exercise 0.1), where we put M = N, η0 = 1, and ϕ(k,m) = (k + 1) ⋅m. An

alternative representation is k! = k

∏
κ=1

κ.

Prove the following.

a) For ` ∈ [k + 1]0, there are
k!

(k − `)! injective mappings from [`] to

[k] (arrangements of ` out of k objects); in particular, k! is the number of
permutations on [k].
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b) ∀k ∈ [`]0 ∶ (k
`
) = 0; otherwise (k

`
) = k!

`!(k − `)! .

c) ∀k, ` ∈ N0 ∶ (k + 1
` + 1) = (

k

`
) + ( k

` + 1) .
0.3. (To be solved without recourse to the sequence (fk)k∈N of p. 16!)

a) Show that the number fk of derangements of [k], k ∈ N0, fulfills the
recurrence

x0 = 1, x1 = 0, ∀k ∈ N ∶ xk+1 = k (xk + xk−1) . (0.14)

b) Prove that (0.14), recurrence

x0 = 1, ∀k ∈ N ∶ xk = k xk−1 + (−1)k (0.15)

and formula

∀k ∈ N0 ∶ xk = k!
k

∑̀
=0

(−1)`
`!

(0.16)

are equivalent.

Remark 0.11. From the Fundamental theorem of recursion (put M = Z, η0 =
1, ϕ(k,n) = (k+1)n−(−1)k) it follows that the sequence (xk)k∈N0

is properly
and uniquely defined by (0.15). The term xk is denoted by k¡ and called “k
subfactorial”. From (a) it follows that k¡ is the number of derangements on
[k]. The sum in (0.16) converges very rapidly to 1/e; in fact, k¡ is the closest
integer to k!/e for every k ∈ N.

0.4. Determine the parity of (1039
11
).

0.5. Find an eulerian trail in Euler’s multigraph of Figure 0.16, including pas-
sage h.

0.6. Show that the symbol in Figure 0.17 can be drawn in one line.

0.7. Construct an algorithm which decides whether an edge in a given graph is a
bridge or not.

0.8. Find all hamiltonian cycles on Hamilton’s dodecahedral graph which start

a) L T S R Q,

b) J V T S R.

0.9. Decide whether K3,3 is planar or not.

0.10. Three men and their corresponding three sisters want to cross a river using
a boat which can take one or two persons. No brother wants to leave his
sister in the presence of another man. How many single river crossings are
necessary and how many solutions to the task can be found?



Chapter 1

The Chinese Rings

In this chapter, we will discuss the mathematical theory of the CR which goes
back to the booklet by Gros of 1872 [119]. This mathematical model may serve
as a prototype for the approach to analyze other puzzles in later chapters. In
Section 1.1 we develop the theory based on binary coding leading to a remarkable
sequence to be discussed in Section 1.2. Some applications will be presented in
Section 1.3.

1.1 Theory of the Chinese Rings

Recall the initial appearance of the puzzle with all rings on the bar (cf. Figure 1.1).

Figure 1.1: Chinese rings

In the introduction we assumed that all configurations of the system of rings
can be reached from this initial state using just two kinds of individual ring moves,
which we will now specify as:

• the rightmost ring can always be moved (move type 0),

• the ring after the first ring on the bar (from the right) can be moved (move
type 1);

A. M. Hinz et al., The Tower of Hanoi – Myths and Maths,
DOI: 10.1007/978-3-0348-0237-6_2, � Springer Basel 2013
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we have chosen the handle to be on the left for mathematical reasons, the rightmost
ring having the least “place value”. From a practical point of view, a move of type 0
consists of two steps, or movements in the sense of Wallis (cf. Section 0.6.1): to
move the rightmost ring off the bar, one has to pull the bar back and then the
ring through the loop; for every other ring, the bar has to be pulled back through
its right-hand neighbor and itself (two movements), then the moving ring goes
through the loop and finally the bar forward through the neigboring ring, all in all
four movements. Since all the movements of the bar are “forced” by the material,
we will only count moves of rings, i.e. movements through the loop.

The original task was to get all rings off the bar, and we have to show that
our assumption was correct. The questions arising are

• Is there a solution? (If the answer is “yes”, then there is also a shortest solution
with respect to the number of moves needed.)

• Is there only one (shortest) solution?

• Is there an efficient solution, i.e. an algorithm realizing the shortest solution?

The same types of questions will be asked for other puzzles in later chapters.
For every ring there are two conditions, namely to be off or on the bar,

represented by 0 and 1, respectively. We define B ∶= [2]0 = {0,1}.
Then every state of the CR with n ∈ N0 rings can be represented by an

s = sn . . . s1 ∈ Bn, where sr = 0 (1) means that ring r ∈ [n] (numbered from right
to left) is off (on) the bar. (We include the case n = 0 for technical reasons; s ∈ B0

is the empty string then by convention.) According to the rules, a bit sk+1 can be
switched, if either k = 0 (move type 0) or sk = 1 and ∀ l ∈ [k − 1] ∶ sl = 0 (move
type 1). That is to say, with b ∈ B,

• any state x . . . yb can be transformed into x . . . y(1 − b) (move type 0),

• any state x . . . yb10 . . .0 into x . . . y(1 − b)10 . . .0 (move type 1).

For n ∈ N0 the task translates to finding a (shortest) path from 1n to 0n in the
graph Rn whose vertex set is Bn and whose edges are formed by pairs of states
differing by the legal switch of one bit. (Here and in the sequel the string b . . . b

of length k ∈ N0 ∪ {∞} will be written as bk; similarly, for strings s and t, st will
denote the concatenated string.) Since this graph is undirected, we may as well
start in α(n) ∶= 0n, a vertex of degree 1, if n ∈ N. Its only neighbor is 0n−11. If n > 1,
the next move is either to go back to 0n, which in view of a shortest path to 1n is
certainly not a good idea, or to the only other neighbor 0n−211. Continuing this
way we will never return to a vertex already visited, because their degrees (at most
2) have been used up already. Therefore, we finally arrive on this path graph at the
only other vertex of degree 1, namely ω(n) ∶= 10n−1. (In addition, we define ω(0)

as the empty string for definiteness as before.) This does, however, not guarantee
that we passed the goal state 1n on our way! A graph with vertices of degree 2
except for exactly two pendant vertices consists of a path and a certain number
of cycles (cf. Exercise 1.1). So what we have to show is that Rn is connected.
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Theorem 1.1. The graph Rn is connected for every n ∈ N0. More precisely, Rn is
the path on 2n vertices from α(n) to ω(n).

Proof. The proof is by induction on n. The case n = 0 is trivial. For n ∈ N0 we
know by induction assumption that Rn is the path from α(n) to ω(n). Attaching 0

at the left of each of its vertices we get a path from α(1+n) to 0ω(n) in R1+n which
passes through all states that start with 0. Similarly, attaching 1 to the vertices
of the same path but taken in reverse order, gives a path on 2n vertices in R1+n

between 1ω(n) and ω(1+n). Since these two paths are linked in R1+n by precisely
one edge, namely the edge between 0ω(n) and 1ω(n), the argument is complete. ◻
Remark 1.2. Readers with a horror vacui are advised to base induction on n = 1.
Remark 1.3. Combining the move types we get the more formal definition of the
graphs Rn by

V (Rn) = Bn, E(Rn) = {{s0ω(r−1), s1ω(r−1)} ∣ r ∈ [n], s ∈ Bn−r} ,
where for each edge r is the moving ring. Note that the distribution s of rings r+1
to n is arbitrary.

Here is an alternative proof for Theorem 1.1. The path Pn ⊂ Rn leading
from α(n) to ω(n) must contain the edge e ∶= {0ω(n−1),1ω(n−1)}, because this is
the only legal way to move ring n onto the bar. This means that Pn contains,
in obvious notation, 0Pn−1, e, and 1Pn−1, the latter traversed in inverse sense.
Hence, ∣Pn∣ ≥ 2∣Pn−1∣, such that, with ∣P 0∣ = 1, we get ∣Pn∣ ≥ 2n and consequently
Pn = Rn. In other words, Rn is obtained by taking two copies of Rn−1, reflecting
the second, and joining them by an edge. As an example, R3 is the path graph
depicted in Figure 1.2. The reflection is indicated with the dashed line and the
digits that were added to the graphs R2 are in bold face.

000 100001 011 010 101110 111

Figure 1.2: The graph R3

From this it is obvious that the edge sets of the Chinese rings graphs can
also be defined recursively.

Remark 1.4. The edge sets of Rn are given by

E(R0) = ∅,
∀n ∈ N0 ∶ E(R1+n) = {{ir, is} ∣ i ∈ B, {r, s} ∈ E(Rn)} ∪ {{0ω(n),1ω(n)}} .

(1.1)
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The reader is invited (Exercise 1.2) to deduce the recurrence

β0 = 0, ∀n ∈ N ∶ βn + βn−1 = 2n − 1 (1.2)

for the number βn of moves needed to take off n ∈ N rings from the bar, i.e.
to get from 1n to 0n in Rn. Obviously, β = 02,12,102,1012,10102,101012, . . . in
binary representation, such that βn = ⌈23(2n − 1)⌉ (A000975 in [296]; the sequence
of differences βn − βn−1, n ∈ N, is the Jacobsthal sequence [296, A001045]). The
classical CR with n = 9 rings can therefore be solved in a minimum of 341 moves.
In order to find out whether we have to move ring 1 or ring 2 first when we begin
with all rings on the bar, we make the following observation.

Proposition 1.5. The function Bn ∋ s ↦ (∑n
r=1 sr)mod 2 ∈ B defines a vertex col-

oring of Rn; the type of the move associated with an edge defines an edge coloring.

The proof is left as an exercise (Exercise 1.3).

Let us break to look back at early theories about the number of moves for a
solution of the CR.

Since the first and then every second move on the path graph Rn is of type 0,
ring 1 moves 2n−1 times on it. This makes up for 2n Wallis movements (cf. p. 41).
The other 2n−1 − 1 moves produce 2n+1 − 4 movements. For n = 9, this leads to
1532 movements; to this one has to add the movement of the bar right to the left
end to arrive at Wallis’s value in Section 0.6.1.

Another counting was used by Cardano, where a simultaneous move up or
down of rings 1 and 2 is allowed for n ≥ 2. Lucas called this the accelerated Chinese
rings (ACR) in [209, p. 183–186]. The diameter of the corresponding graph reduces
to 3 ⋅ 2n−2 − 1, and the standard task can then be solved in β̃n = 2n−1 − (n even)
moves; see Exercise 1.4.

It might be true that the Latin in Cardano’s passage [50, p. 492f] is difficult
to understand; possibly, as Gros [119] assumes, because written by a second hand.
But it is clear from the beginning that he is dealing with ACR for n = 7. Therefore,
the (only) numbers 31, 64, 95, and 190 occurring in the text are neither misprinted
nor mathematical errors, as Gros and others claim, but are, respectively, β̃6, β̃7,
3 ⋅25−1, and twice the latter number. So Cardano gave the lengths of the solutions
to get from 106 to 17, from 17 to 07, for the whole path and for the “circulus”.

We are now also able1 to interpret the two tables in the book by Zhu Xiang
Zhuren mentioned in the introduction. We refer to Figure 0.24 whose contents
have to be read from top to bottom and from right to left. The passage is enti-
tled “Untangling Linked Rings Method” (解连环法). In the top row the rings are
numbered above the puzzle (which has its handle on the right) as in Figure 1.1;
instructions are given how to operate it and how to use the tables, the second
of which “many times”. The insert in the center row says “When possible, move
the first two rings at the same time in one move.”, that is, Cardano’s counting is

1only with the generous aid by Wei Zhang and Peter Rasmussen
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employed. Table I in the same row consists of 11 columns and 6 rows. The first
case (top right) does not count, but has the overlaid inscription “This table takes
the 9th ring off”. And that is what it does! It starts (below the latter inscription)
with “1 off, 3 off, 1 on, 2 and 1 off” and reaches the end of the first column with
“4 off”. (The Chinese characters for “on” (up) and “off” (down) are上 (shang) and
下 (xia), respectively; the number symbols can easily be taken from the very top
of the figure.) Then the second column starts with “2 and 1 on”. Below the bottom
left case, we find the inscription “The 9th ring is now off”. In our notation this
table solves the task 19 → 0107, and the number of moves needed can be calculated
from the dimensions of Table I as 11× 6− 1 = 65 and read from the line above the
table. But for the last move, this is the solution for the 7-ring puzzle in β̃7 = 64
moves! The task is therefore reduced to solving 107 → 08, i.e. to traverse the whole
path graph R8, which should take 3 ⋅ 26 − 1 = 191 further moves. This is done with
the aid of Table II in the bottom row of Figure 0.24. A first run leads to ring
8 being taken off, i.e. to state 02106, after 16 × 6 = 96 moves. (The entry in the
penultimate case of the table wants to indicate the state before ring 8 is taken off;
given that ring 9 was taken off by Table I, “rings 8 and 9 are on” is an obvious mis-
print for “rings 7 and 8 are on”.) Instead of making use of the reflective structure
of the state graph and going back Table II switching “on” and “off”, the author
now employs an iterative method, using the table once again from the beginning,
but stopping in the middle, when ring 7 can be taken off. This is mathematically
correct, because the first half of the CR graph is the same if a leading 0s is deleted.
The kth application of Table II therefore solves the task 0k108−k → 0k1207−k, i.e.
08−k → 107−k, in 3 ⋅ 26−k − 1 moves and then puts ring 9 − k down. So the 6th run
ends already halfway through the rightmost column. This is indicated by the two
lines on the margin saying that “rings 2 and 3 are on” and then “ring 3 is now off.”
Finally, the last two moves are in cases 4 and 5 of the right-hand column. The
move numbers to get rings 3 to 8 off are again given above Table II. Adding up
these values together with the two last moves gives the correct sum 191 indicated
above.

Coming back to the standard style of counting individual ring moves, we
have:

Proposition 1.6. The CR with n ∈ N rings have a unique minimal solution of length
⌈2
3
(2n − 1)⌉. It can be realized by alternating moves of types 0 and 1, starting with

type 0 if n is odd and type 1 otherwise.

Remark 1.7. If one finds the CR abandoned in state s ∈ Bn, there is an easy way
to decide about the best first move to get to α(n) (the next moves being obvious on
a path graph). As neighboring states differ by one bit only, the sum of bits of s

will be odd if the last move on the path from α(n) to s is made by ring 1 and even
otherwise. So the parity of the sum of bits of s will tell you which move to make
first on the reverse path.
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Every connected graph has a canonical metric, the graph distance d(s, t)
between two vertices s and t being given by the length of a shortest s, t-path. A
direct application is the existence of perfect codes for Rn, see Exercise 1.5. The
proof of Theorem 1.1 shows that the diameter diam(Rn) of Rn is d(α(n), ω(n)) =
2n − 1 and that there is a unique shortest path between any two states of the CR.
Their distance is given by d(s, t) = ∣d(s) − d(t)∣, where d(s) ∶= d(s,α(n)) can be
determined by a finite automaton (cf. Figure 1.3). It consists of two states A and
B. The input of a bit a in A results in printing a and moving to state B if a = 1;
the input of b in B leads to printing of 1 − b and moving to A if b = 1.

A B

00

0

0 11

111

Figure 1.3: Automaton for the Gros code

Proposition 1.8. If we enter the components sr of s = sn . . . s1 ∈ Bn, n ∈ N, from
left to right, starting in state A of the automaton, the resulting output, read from
left to right and interpreted as a binary number, gives the value of d(s).
Proof. We prove by induction on n that input of s starting in A gives d(s) and
input of s starting in B gives 2n − 1 − d(s). This is obviously true for n = 1. Let
n ∈ N and s ∈ B1+n. If s = 0s, s ∈ Bn, then starting in A leads to d(s) = d(s),
because d(s) < 2n; starting in B gives 2n + 2n − 1− d(s) = 21+n − 1− d(s). If s = 1s,
then starting in A leads to 2n+2n−1−d(s) = d(s), because d(s) = 2n+d(s,ω(n));
starting in B gives d(s) = 21+n − 1 − d(s). ◻
Remark 1.9. It follows immediately from Proposition 1.5 that the best first move
from state s to state t is of type d(s) mod 2, if d(s) < d(t) and of type 1−(d(s)mod

2) otherwise. The rest of the shortest path is then again obtained by alternating
the types of moves.

The bijection from Bn to [2n]0 provided by the automaton above is a coding
of the states of the CR by the distance from the state α(n). This code goes back
to Louis Gros, who in 1872 published a theory of the baguenaudier, as the CR are
called in French [119]. Its inverse is called Gray code, after F. Gray, who got a
patent [116] for it in 1953. In fact, if dr are the bits of d ∈ N0, we may put

∀ r ∈ N ∶ sr = (dr + dr−1)mod 2 . (1.3)
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Then d(s) = d, as can be seen by applying the automaton or either Gros’s formula
dr−1 = dr + (1 − 2dr)sr (cf. [119, p. 13]). The corresponding automaton for the
Gray code is shown in Figure 1.4. Here moves between the two states of the
automaton are performed according to the one-sided arrows. For an application,
see Exercise 1.6.

A B

0
0

0

0

0

1

1

111

Figure 1.4: Automaton for the Gray code

Because of the construction in the proof of Theorem 1.1, the Gray code is also
called reflected binary code (cf. Figure 1.2). Its main advantage is that neighboring
code numbers differ by exactly one bit. More on Gray codes can be found in [180,
Section 7.2.1.1]. For instance, it can also be produced in an iterative way with the
aid of the Gros sequence; see Section 1.2 below.

A state s ∈ Bn being uniquely determined by its distance d(s) from α(n) and
with all values from 0 to 2n − 1 occurring, it is obvious that the average distance
to α(n) (or to ω(n) for that matter) in Rn is 2−n∆2n−1 = (2n − 1)/2. This is not
too surprising given that Rn is isomorphic to the path graph on 2n vertices P2n .

The eccentricity ε(v) of a vertex v in a path graph is always the maximum
of its distances to the two end vertices. Therefore, in R1+n, n ∈ N0, we have

∀ i ∈ B, s ∈ Bn ∶ 2n ≤ ε(is) = 2n+1 − 1 − d(s) ≤ 2n+1 − 1 ,
and every value in that range appears precisely once for each i. Hence, the total
eccentricity of R1+n is (cf. [296, A010036])

E(R1+n) = 2 2
n+1−1

∑
k=2n

k = (2n+1 − 1)2n+1 − (2n − 1)2n = 2n(3 ⋅ 2n − 1) ,

such that the average eccentricity on R1+n turns out to be (cf. [154, Proposi-
tion 4.1])

ε(R1+n) = 1

2
(3 ⋅ 2n − 1) , (1.4)

i.e. asymptotically (for n→∞) 3/4 of the diameter.
To find the average distance on Rn, we can start off from the notion

of the Wiener index W (G) of a connected graph G, namely the total sum
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W (G) = ∑
{s,t}∈(V (G)

2
)

d(s, t) of distances between any two vertices of G. The average

distance on G is then2

d(G) = 2W (G)
∣V (G)∣2 .

Knowing the Wiener indices of path graphs from Exercise 1.7, we get

d(Rn) = 1

3
(2n − 2−n) , (1.5)

or approximately 1/3 of the diameter.

Finally, it would be interesting to know whether it is likely to arrive at
a solution for the CR by chance, that is if the player makes moves at random
choosing move types 0 or 1 with equal likelihood 1/2 (except in states α(n) and
ω(n)). Based on the method of Markov chains (cf. [203] and infra, Section 4.1),
H. L. Wiesenberger has found [338, p. 66f] that the expected number of moves to
reach state t from s on such a random walk in Rn is

de(s, t) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

d(t)2 − d(s) , if d(t) > d(s) ;
0 , if d(t) = d(s) ;
(2n − 1 − d(t))2 − (2n − 1 − d(s)) , if d(t) < d(s) .

In particular, de(0n,1n) = β2
n, but de(1n,0n) = (2n − 1)2 − βn−1 for n ∈ N. So it

was a good idea of Hung Ming to give the jiulianhuan to his wife with all rings
on the bar, because she would need 260951 moves to get them all off, in contrast
to 116281 moves the other way round, if she wanted to solve it without thinking.
These huge numbers demonstrate the advantage of a good mathematical model!

1.2 The Gros Sequence

CR yields an interesting integer sequence—the Gros sequence. It will become clear
later that this is just the tip of an iceberg because many additional interesting
integer sequences will appear in due course.

An analysis of the solution for the CR reveals the following: assuming that
there are infinitely many rings and starting with all of them off the bar, the
sequence of rings moved starts

g = 1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,5,1,2,1,3,1, . . .
Note that we have paused at the moment when the first 5 rings are on the bar.
This sequence is, of course, already anticipated in Zhu Xiang Zhuren’s solution:
the ring numbers in the bottom line of his Table II (cf. the bottom row in Fig-
ure 0.24) reading 4,5,4,6,4,5,4,7,4,5,4,6,4,5,4,8. P. Rasmussen came up with
a nice mnemonic:

2Some authors prefer to divide by ∣V (G)∣(∣V (G)∣ − 1) only; cf. [46, Equation (9.4)].
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one two one three one two one four one two one three one two one more .

To the best of our knowledge, the sequence g was studied for the first time
by Gros in his 1872 pamphlet [119], hence we named it the Gros sequence. It is
the sequence A001511 in [296] where it is referred to as the ruler function; cf. the
markings on an imperial ruler, just like the heights of the columns in Figure 0.9.
The Gros sequence obeys the following appealing recurrence.

Proposition 1.10. For any k ∈ N,

gk = { 1, k odd;

gk/2 + 1, k even.

Proof. Recall from Proposition 1.5 that in the solution of the CR, the moves
alternate between type 0 and type 1. So every odd numbered move (or odd move
for short) is of type 0 which implies that gk = 1 when k is odd. Now consider even
moves (that is, moves of rings 2,3,2,4, . . .) and observe that they are identical to
the solution of the puzzle with rings 2,3, . . . . Since these moves appear in even
steps, the second assertion follows. ◻

Repeated application of the recursion in Proposition 1.10 implies:

Corollary 1.11. Let k ∈ N and write k = 2r(2s + 1), r, s ≥ 0. Then gk = r + 1.
Corollary 1.11 can be rephrased by saying that gk is the number of times the

factor 2 appears in 2k. Already in 1808, A. M. Legendre posed the question, how
many factors 2 the number n! has [188, p. 8–10] (cf. [179, p. 51, Exercises 11/12]).
This amounts to summing the binary carry sequence g̃ [296, A007814], defined
in Exercise 1.8, where it is shown that g̃k = gk − 1. He obtained the remarkable
formula

n

∑
k=1

g̃k = n − q(n), (1.6)

where q(n) denotes the number of 1s in the binary representation of n; see Exer-
cise 1.9 for the proof.

Gros makes use of Corollary 1.11 for his “practical rule” [119, p. 14f] for a
move in a state s with d(s) = k: the move which led to s from α(n) is by ring
gk, which is the position (counted from 1) of the rightmost bit 1 in k. Therefore,
a move of this ring from s will lead to α(n). By symmetry, moving away from
α(n) involves the ring with the position number of the rightmost 0 in the binary
representation of k. Compared to our recipe in Remark 1.7, this procedure has
the practical disadvantage that the state s is visible for the problem solver, but k

has to be calculated. For the general task to get from s to t, solved by Lucas [214,
p. 179], this is unavoidable though; cf. Remark 1.9.

Another use can be made of the binary representation to find out whether in

move k = ∞∑
ν=0

kν ⋅ 2ν ring r = gk goes up (1) onto the bar or down (0), still assuming
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an infinite supply of rings and starting with all of them off the bar. Let us denote
the resulting binary sequence by f ∈ BN. Then ∀k ∈ N ∶ fk = 1 − kgk , because this
is the position (off or on the bar) of ring gk after move number k according to
(1.3). From Proposition 1.10 it is clear that fk can be obtained recursively by

∀ ` ∈ N0 ∶ f2`+1 = 1 − `mod 2, f2`+2 = f`+1 .
Let us look at the sequence f from a different prospect. Have you ever won-

dered why it is so difficult to fold a package insert of some medicine back after it
had been unfolded? Try the inverse: take a lengthy strip of paper, fold it on the
shorter center line and keep on doing this, always in the same direction, as long as
it is physically feasible, the mth bending producing 2m−1 new folds. In the left pic-
ture of Figure 1.5 four foldings have been performed and colored according to their
appearance, such that altogether 15 edges occur on the paper strip. Now unfold
with approximately right angles at these fold edges. Despite the straightforward,
symmetric procedure, the paper strip, viewed from the edge, will look surprisingly
erratic as in the right-hand picture of Figure 1.5. Rotating at the center (red) fold,
then at the secondary (green) one, then at blue and finally violet, you can solve
the package insert problem.

Figure 1.5: Folding and unfolding a paper strip

The arising polygon has been called a dragon curve (of order 4) because its
shape tends (for higher orders) to the silhouette of a sea dragon; it is one of the
favorites of fractal people (cf. [228, p. 66]) because of its interesting properties. For
instance, in the top left picture of Figure 1.6 four copies of the curve of order 4

from Figure 1.5 meet at right angles in the center point. In the subsequent pictures
the order grows up to 11, and at each step a scaling by the factor 1/√2 has been
performed such that the maximal squares inside which all gridpoints are covered
have equal side-length. Figure 1.6 can be viewed as a proof without words for the
space-filling property of dragon curves; cf. [276, p. 163f].

The folding is completely described by the sequence of orientations of the
turns at the fold edges, i.e. the corners of the curve, either right (0) or left (1).
For an (m + 1)-fold folding, m ∈ N0, this paper-folding sequence ϕ ∈ BN fulfills, if
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Figure 1.6: Space-filling property of the dragon curve

we start with a left bending,

∀m ∈ N0 ∶ ϕ2m = 1, ∀µ ∈ [2m − 1] ∶ ϕ2m+µ = 1 −ϕ2m−µ

because of the reflection at the center fold 2m. This is similar to the behavior of
the Gros sequence as noticed by A. Sainte-Laguë [278, p. 40]. (The Gros sequence
is misprinted there.) More precisely, as observed in [77], ϕ represents the pattern
of ups and downs in the CR! Ring r ∈ N is moved up for the first time in move
number 2r−1 after a sequence of moves leading from α(r−1) to ω(r−1) has been
performed. This is followed by a complete transformation from ω(r−1) to α(r−1),
i.e. the original subsequence in reflected order. So the sequence

f = 1,1,0,1,1,0,0,1,1,1,0,0,1,0,0, . . .
is the paper-folding sequence ϕ (cf [296, A014577]), and our Chinese lady may
amuse herself with either the CR or the folding of paper strips.

The Gros sequence can be found all over mathematics, for instance in con-
nection with hamiltonian cycles on the edges of n-dimensional cubes; see Exer-
cise 1.10. If in Figure 0.3 we start on bottom at 0 and change bits going around
counter-clockwise according to the Gros sequence, i.e. 1,2,1,3,1,2,1, we obtain
the numbers from 0 to 7 in the order of the Gray code as in Figure 1.7.

Before we turn to some applications of the CR in Section 1.3, we show the
presence of the Gros sequence in the fascinating theory of square-free sequences.

The greedy square-free sequence

A sequence a = (an)n∈N of symbols an from an alphabet A is called non-repetitive
or square-free (over A) if it does not contain a subsequence of the form xx (a
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Figure 1.7: Gray’s arrangement of the trigrams

square), where x is a non-empty subsequence of consecutive symbols of a. Clearly,
1,2,3,4, . . . is a square-free sequence over the alphabet N. It is not very exciting
though and expensive in the sense that it uses large numbers at early stages. So
let us try to find a cheaper one by one of the most popular strategies in the theory
of algorithms, namely the greedy approach; cf. p. 33. Roughly speaking, given a
problem, a solution to the problem is built step by step, where in each step a
partial solution is selected that optimizes certain greediness criteria.

In our case, the most obvious greediness criterion is to select the next term of
the sequence as the smallest integer that does not produce a square. Let a = (an)n∈N
be the sequence obtained by this procedure; i.e.,

∀n ∈ N ∶ an =min {α ∈ N ∣ a1, . . . , an−1, α contains no square} .
The sequence a is square-free, because any square would already occur at some
finite stage of its construction. Clearly, a1 = 1, a2 = 2, and a3 = 1. Then a4 ≠ 1

and a4 ≠ 2, hence a4 = 3. Continuing such a reasoning it is easy to see that the
sequence a begins as follows:

1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,5,1, . . .

From here we can guess the following result, a formal proof of which is left for
Exercise 1.11:

Proposition 1.12. The sequences g and a are the same.

In particular, the Gros sequence is square-free ([144, Theorem 0]); it is even
strongly square-free; cf. Exercise 1.12. We will return to square-free sequences in
Chapter 2.
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1.3 Two Applications

In this section we demonstrate how the theory of the CR and the Gros sequence
can be helpful in the analysis of other problems.

Topological variations

We may turn our viewpoint around and ask whether there are other puzzles whose
state graphs are isomorphic to Rn. In psychology literature they are called problem
isomorphs. It has been regarded as a deficiency that the classical realization of R9

in form of the CR as shown in Figure 1.1 physically allows us to move rings 1 and 2

simultaneously if they are both either on or off the bar. This is why we insisted on
individual ring moves and counted them accordingly (see, however, Exercise 1.4).
A variant which does not display this ambiguity was patented under the title
“Locking disc puzzle” (LD) by W. Keister (cf. [164]). Here the intertwined system
of rings of the CR is replaced by an arrangement of circular discs on a slide with
three of the 90○ sectors of the circle cut out to allow for rotation about their center
(see Figure 1.8 for the 6-disc version). (To avoid a trivial solution, the first disc has
only two sectors cut out and the one opposite to the convex side just flattened.)
The bar of the CR corresponds to a frame in LD which is designed in a way to

Figure 1.8: The Locking disc puzzle

realize the same kind of individual moves (i.e. rotation of discs and moving the
slide back and forth) as for the CR. Thus the conditions “off” and “on” the bar of
the rings in CR is translated into an orientation of the convex side of a disc parallel
to the slide or perpendicular to it: as soon as all discs are positioned horizontally,
the slide can be pulled out of the frame. However, this puzzle is not equivalent
to the CR, because there are two horizontal orientations of the discs (a second
vertical orientation is debarred by the frame), such that the corresponding state
graph has more vertices than R6 and therefore can not be isomorphic to it.

In a second attempt to improve the CR hardware, Keister came forward with
the “Pattern-matching puzzle” (PM) (cf. [165]), where in addition to a slide and a
frame there is a rack attached to the frame which holds 4 pattern bars. The latter
constitute a 4-bit code which is fixed at the beginning. Due to the mechanical
arrangement of PM only one of the 8 teeter bars on the slide can be moved at a
time and this move of bar b ∈ [8] between two positions “up” (1) and “down” (0)
is possible only if the bars with smaller labels coincide with the given code (filled
up to the right by 0s; we adapted the labellings to our CR notations). Again the
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task starts with all teeter bars up, i.e. in state 18, and the slide can be detached
from the frame only in state 08. It turns out that one can reach each of the 28

states of the teeter bars from every other one in a unique path, such that the
correspnding state graph for each of the 16 codings of the pattern bars is a tree on
28 vertices. Therefore, the task to free the slide has different (lengths of) solutions
depending on the code, 0000 leading to the shortest one with just 8 moves. Only
in the special case 1000 of the pattern code the corresponding tree is actually a
path graph and the puzzle isomorphic to the CR with 8 rings, such that the task
needs β8 = 101010102 = 170 moves.

A much more challenging variant of the CR is depicted in Figure 1.9, and
following E. R. Berlekamp, J. H. Conway and R. K. Guy [34, p. 858] we will call
it the Chinese string (CS). Here the system of n ∈ N rings in the original puzzle
is arranged in a rigid, but otherwise topologically equivalent manner in a frame,
e.g., made of wood. The shuttle of the CR is replaced by a flexible rope (or string)
of sufficient length. At the beginning, the rope, initially separated from the frame,
is somehow entangled with it and the task for the player is to disentangle the rope
from the frame. (The dotted arc in Figure 1.9 does not belong to the puzzle and
will be explained later.)

12345

Figure 1.9: Chinese string puzzle

Because of the flexibility of the rope it is clear that there are many more
possible states of the CS puzzle, but that any distribution s ∈ Bn of the CR can
also be realized in CS by inserting the rope into the frame in the same geometric
fashion as the shuttle is moved into the rings in CR. For an example, see Figure 1.10
showing s = 11001.

Since there is no obvious notion of a move in CS, the complexity of a solution
has to be defined in a topological way. In [163], L. H. Kauffman suggests to add
an imaginary arc running from the tip of ring 1 to the base of the frame as in
Figure 1.9 and to count the number of crossings of this arc with the loop during
a solution; the minimal number of crossings taken over all solutions is called the
exchange number of s. Every solution to get from s to α(n) in CR can also be
performed on CS. Herein only the moves of ring 1 will cross the arc. Therefore the
exchange number is bounded from above by the number of moves of ring 1 in the
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12345

Figure 1.10: State 11001 of CS

optimal solution in CR, which is ⌈d(s)
2
⌉. Kauffman’s Ring conjecture [163, p. 8]

says that this is also a lower bound for the exchange number of s. This conjecture
has been confirmed by J. H. Przytycki and A. S. Sikora in [266, Theorem 1.1] for
the special case s = ω(n) (cf. Figure 1.9 for n = 5), where the exchange number is
2n−1. The general case seems to be open.

For psychological tests it might be interesting to compare the performance
of subjects who are first confronted with the CR and thereafter with the CS or
vice versa, because it seems to be very confusing that fixed and moving parts of
the puzzles are interchanged in the two versions.

Tower of Hanoi networks

We next briefly describe an application of the sequence g from physics.
S. Boettcher, B. Gonçalves, and H. Guclu [39, 40] introduced two infinite graphs
named Tower of Hanoi networks. They introduced them to explore aspects of a
small-world behavior and demonstrated that they possess appealing properties.

The network/graph HN4 is defined on the vertex set Z. Connect each vertex
k to k + 1 and k − 1, so that the two-way infinite path is constructed. Next write
k ∈ Z ∖ {0} as k = 2r(2s + 1), r ∈ N0, s ∈ Z, and connect k to 2r(2s + 3), and
2r(2s − 1). Finally add a loop at the vertex 0 so that the constructed graph HN4
is 4-regular. It is shown in Figure 1.11.

The graph HN3 is defined similarly, except that it is built on the basis of the
one-way infinite path to which only edges that form “forward jumps” are added.
Instead of giving its formal definition we refer to Figure 1.12.

To see the connection between the networks HN3/HN4 and the sequence g,
consider the vertices of HN4 that belong to N. By the definition of the network, a
vertex k = 2r(2s+ 1) has four neighbors, the largest of them being 2r(2s+ 3). The
jump from k to 2r(2s + 3) is

2r(2s + 3) − 2r(2s + 1) = 2r+1 = 2gk ,
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Figure 1.11: Network HN4

Figure 1.12: Network HN3

the latter equality following from Corollary 1.11. A similar conclusion holds for
HN3. Hence a historically better justified name for the HN3/HN4 networks would
be Chinese rings networks.

As already mentioned, the sequence g appears in many situations, too many
to be even listed here. The biggest surprise, however, is that the Gros sequence
solved the Tower of Hanoi before the latter was at all invented!

1.4 Exercises

1.1. Show that a graph with all vertices of degree 2 except for two pendant vertices
is the union of a path with some (maybe no) cycles.

1.2. Derive recurrence (1.2).

1.3. Prove Proposition 1.5.
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1.4. Consider the ACR for n ≥ 2.
a) What is the corresponding state graph?

b) Calculate the value of its diameter.

c) Determine the minimal number of moves β̃n needed to solve the ACR task
1n → 0n (or vice versa).

1.5. A perfect code in a connected graph G = (V,E) is a subset C of the vertex
set V with the property

∀v ∈ V ∃1 c ∈ C ∶ d(v, c) ≤ 1 .
The elements of C are called codewords.

Show that Rn, n ∈ N0, contains precisely two perfect codes C, if n is
odd, and precisely one, if n is even. How large is ∣C ∣?

1.6. [79, Problem 417] Suppose there are altogether fourteen rings on the tiring
irons [Chinese rings] and we proceed to take them all off in the correct way
so as not to waste any moves. What will be the position of the rings after
the 9999th move has been made?

1.7. Determine the Wiener index of the path graph on k ∈ N vertices Pk.

1.8. Let k = (bnbn−1 . . . b1b0)2 be the binary representation of an integer k ∈ N.
Define g̃k = i, where bi = 1 and bj = 0 for j ∈ [i]0. (That is, g̃k is the index of
the right-most non-zero bit in the binary representation of k. For instance,
g̃1 = 0 and g̃24 = 3.) Show that

g̃k + 1 = gk .
1.9. Show that for k ∈ N, the function q fulfills

q(k) = { q(k − 1) + 1, k odd;

q (k
2
) , k even

and deduce Legendre’s formula (1.6) from this.

1.10. The n-cube is the graph with vertex set {b1b2 . . . bn ∣ bi ∈ B}, two vertices
being adjacent if their labels differ in exactly one position. Show that the
n-cube contains a hamiltonian cycle for any n ≥ 2.

1.11. Show that the Gros sequence and the greedy square-free sequence are the
same.

1.12. [144, p. 259] A sequence of symbols a = (an)n∈N is called strongly square-free
if it does not contain a subsequence of the form xy (an abelian square), where
x and y are non-empty subsequences of consecutive symbols of a such that
the symbols from y form a permutation of the symbols from x. Show that
the Gros sequence is strongly square-free.



Chapter 2

The Classical Tower of Hanoi

This chapter describes the classical TH with three pegs. In the first section, the
original task to transfer a tower from one peg to another is studied in detail.
We then extend our considerations to tasks that transfer discs from an arbitrary
regular state to a selected peg. We further broaden our view in Section 2.4 to
tasks transforming an arbitrary regular state into another regular state. For this
purpose it will be useful to introduce Hanoi graphs in Section 2.3.

2.1 Perfect to Perfect

In this section we analyze the classical task to transfer a tower from one peg to
another in the minimum number of moves. We will call this problem type P0. After
introducing a mathematical representation of the problem, its unique solution is
given as an iterative algorithm. Olive’s algorithm is much more practical than
the classical recursive algorithm which we restate anyway in order to make the
picture complete. (In fact, in the majority of books that come in contact with the
TH recursion is the central if not the only approach eventually presented!) We
begin with the concept of regular states.

Regular states

The TH consists of three vertical pegs, anchored in a horizontal base plate, and a
certain number of discs of mutually different diameters. Each disc is pierced in its
center so that it can be stacked onto one of the pegs. Any distribution of all discs
on the three pegs with no larger disc lying on a smaller one is called a regular state
of the puzzle; a perfect state is a regular state with all discs arranged on one and
the same peg. See Figure 2.1 for examples of a perfect and a regular state.

Following the model of the theory for the Chinese rings in Chapter 1, we
define T = {0,1,2} (T for ternary) and

A. M. Hinz et al., The Tower of Hanoi – Myths and Maths,
DOI: 10.1007/978-3-0348-0237-6_3, � Springer Basel 2013



72 Chapter 2. The Classical Tower of Hanoi

0 1 2 0 1 2

Figure 2.1: A perfect and a non-perfect regular state

• label the pegs 0, 1, and 2.

We denote the number of discs by n and

• label the discs from 1 to n in increasing order of diameter.

Then every regular state is represented uniquely by an element s = sn . . . s1 ∈ T n,
where sd is the peg on which disc d is lying. For instance, the perfect state and the
non-perfect regular state of Figure 2.1 are represented by 00000 (or 05) and 02012,
respectively. (Mathematically it makes no difference how the pegs are physically
distributed. For simplicity, most of our pictures show them arranged in line, but
the reader should still imagine them as in the original TH of Figure 0.4.)

For future purposes the following observation is useful. For m ∈ [n] and
s ∈ Tm let sT n−m = {st ∣ t ∈ T n−m}. Obviously, ∣sT n−m∣ = ∣T n−m∣. Moreover,1

T n = ⊍
s∈Tm

sT n−m . (2.1)

This fact is proved in Exercise 2.1. The most important case is m = 1. It shows that
T n decomposes naturally into the three (disjoint) sets 0T n−1, 1T n−1, and 2T n−1,
characterized by the position of the largest disc.

Legal moves

A disc can be moved from the top of a stack on one peg to the top of the (possibly
empty) stack on another peg, provided one obeys the divine rule. The classical
task is to get from a perfect state to another perfect state by a sequence of such
legal moves. The ultimate goal is to find a shortest solution, that is, a solution with
the minimum number of moves. In Figure 2.2 a solution for the TH with 4 discs is
presented. (We will see soon that this solution is the solution of the puzzle.) The
middle column of the figure gives the labels of the discs moved.

The optimal solution

As in the case of the CR it is clear that in an optimal solution disc 1 has to be
moved in the first step and then in every second move. Hence it will move in every

1By ⊍ we mean the union of pairwise disjoint sets.
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Figure 2.2: Solution of the TH with 4 discs

odd numbered move. The even numbered moves are then imposed by the divine
rule because the smallest top disc that is not disc 1 has to be moved. Moreover,
the moves of discs 2 to n form an optimal solution with respect to the same task
but with only n − 1 discs. This is because disc 1 can always be moved out of the
way for another disc to be moved. Recalling the Gros sequence g and its basic
property from Proposition 1.10, we are therefore led to the following alternative
to Theorem 0.10.

Theorem 2.1. The classical TH task for n ∈ N0 discs has a unique optimal solution
of length 2n − 1. The k-th move in this solution is by disc gk, k ∈ [2n − 1].
Proof. We proceed by induction on n, where in the induction step from n to n+ 1
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we know that odd moves are moves of disc 1 and in even moves k, which form an
optimal solution for the n-tower of discs 2 to n + 1, disc gk/2 + 1 = gk is moved.
Moreover, by induction assumption also the directions of these even moves are
uniquely determined. Therefore, the directions of odd moves are uniquely deter-
mined as well because disc 1 has to move away appropriately and goes to the goal
peg directly in the very last step. Hence the optimal solution is unique.

As to the number of moves, again by the induction assumption the n larger
discs move 2n − 1 times and the smallest disc the same number of times plus the
last move, yielding 2 (2n − 1) + 1 = 2n+1 − 1. ◻

An alternative for the induction step in the preceding proof avoiding recourse
to the Gros sequence can be based on the following observation.

Proposition 2.2. In the optimal solution to transfer n ∈ N0 discs from one peg to
another, disc d ∈ [n] moves for the first time in step 2d−1 and for the last time in
step 2n − 2d−1; in particular, the largest disc n moves exactly once, namely in the
middle of the solution.

The proof is left as Exercise 2.2.

Olive’s algorithm

The discussion before the proof of Theorem 2.1 shows that just like for the CR,
disc 1 is moved in every odd move and the even moves are dictated by the divine
rule. However, now we need an additional information about the direction of the
moves of disc 1. It can be observed by considering small numbers of discs that in
the optimal solution disc 1 moves cyclically among the pegs. When n is odd, it
moves from source peg via goal peg to intermediate peg; if n is even, the cycle is
from source peg via intermediate peg to goal peg. This observation has been made
by Lucas’s nephew Raoul Olive and leads to Algorithm 2. (Note that 3 − i − j is
the peg different from both i and j.)

We leave the correctness proof for Olive’s algorithm for Exercise 2.3. The
formally even simpler Algorithm 3 (cf. [299]) can be obtained by looking at the
idle peg, i.e. the peg not involved in a move (cf. [76, p. 55], where the name “idle”
(pusto�) is attributed to M. Fyodorov). It can be thought of as a virtual disc 0
which always makes room for the real discs. To distinguish it from the latter let us
visualize it by a thimble which is placed at the beginning on top of peg i where the
n-tower initially rests. Take the thimble in your left hand and move it cyclically
on top of the pegs. In between, with your right hand, you make the only legal
move of a disc avoiding the peg sealed by the thimble. Then eventually all discs
will arrive at peg j if the direction in the cycle for the thimble had been chosen
correctly according to parity of the number of discs.

Assuming that we go from peg i = 0 to peg j = 2, the idle peg in move number
` ∈ [2n − 1] is ((2 − (nmod 2)) `)mod 3. If ` is given in binary representation
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Algorithm 2 Olive’s algorithm
Procedure p0(n, i, j)
Parameter n: number of discs {n ∈ N0}
Parameter i: source peg {i ∈ T }
Parameter j: goal peg {j ∈ T }

if n = 0 or i = j then STOP
if n is odd then

move disc 1 from peg i to peg j

else
move disc 1 from peg i to peg 3 − i − j

end if
remember move direction of disc 1
while not all discs are on peg j

make legal move of disc not equal 1
make one move of disc 1 cyclically in its proper direction

end while

Algorithm 3 Idle peg algorithm
Procedure p0i(n, i, j)
Parameter n: number of discs {n ∈ N0}
Parameter i: source peg {i ∈ T }
Parameter j: goal peg {j ∈ T }

idle← i, dir ← (−1)n(j − i) {idle peg and its cyclic direction}
while not all discs are on peg j

idle← (idle + dir) mod 3

make legal move between pegs different from idle

end while

n−1

∑
ν=0

`ν2
ν , we can determine the idle peg as the final state of the automaton in

Figure 2.3 (cf. [259, Fig. 2]) after the successive input of `ν , starting in state 0

and going from ν = n− 1 to 0. (A transition between states of the automaton only
occurs if the input matches the label on an arrow.) The proof of correctness for
this procedure is by induction, where one has to take thorough care of the parity
of n.

It comes as a surprise that the highly repetitive sequence of positions of the
thimble leads to another square-free sequence (cf. Section 1.2).

More square-free sequences

Indeed, let us assume that we have an infinite supply of discs. (A bold assumption
given that the original ones were made of pure gold!). Let the position of the
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0
01

1 + (n even) 1 + (n odd)

Figure 2.3: Automaton for the idle peg

thimble follow the sequence 0,1,2,0,1,2, . . .. For instance, position 1 of the idle
peg means a move of a disc between pegs 0 and 2. Taking into account the direction
of that move, we leave the entry 1 if this move is from 0 to 2, but write 1 if it is
from 2 to 0. Similarly, 0 stands for a move from 2 to 1, 0 for 1 to 2, 2 for a move
from 1 to 0, 2 for 0 to 1. This encoding is summarized in Table 2.1.

move between pegs 0→ 2 2→ 1 1→ 0 0→ 1 1→ 2 2→ 0

encoding 1 0 2 2 0 1

Table 2.1: Encoding of move types

Then our infinite sequence of moves, called Olive sequence, starts

o = 1,2,0,1,2,0,1,2,0,1,2,0,1,2,0, . . . ,
when a 4-tower has been moved from peg 0 to peg 1. Note that the unbarred
version of o provides yet another practical solution: follow this sequence without
regarding the direction of the move, the latter being implied by the divine rule
anyway, cf. [290, p. 97].

The orientation respecting sequence o has the further property of being
square-free. This was proved for the first time by J.-P. Allouche, D. Astoorian,
J. Randall, and J. Shallit in [5, Theorem 9]; for an alternative approach, see [144,
Theorem 1].

The sequence o uses six symbols. As noticed by Hinz [144, Theorem 2], this
can be reduced by combining its terms into triples. It turns out that only five of
these actually occur, namely

A = (1,2,0), B = (1,2,0), Γ = (1,2,0), ∆ = (1,2,0), E = (1,2,0) .
This leads to a new sequence

h = A,B,A,Γ,A,B,∆,E,A,B,A,Γ,A,E,∆, . . . ,

which is square-free, for otherwise the sequence o would contain a square as well.
Contrary to the Gros sequence g, however, both h and o are not strongly square-
free (Exercise 2.4).
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Other algorithms

It is obvious that Olive’s algorithm can be carried out by a human being without
further thinking. It is therefore much more practical than the classical recursive
algorithm mentioned in the introduction: imagine, for the latter, brahmin d ∈
[64] ∖ {1}, responsible for disc d, passing on duties to brahmin d − 1. For the
general case, the recursive algorithm is realized as Algorithm 4.

Algorithm 4 Recursive algorithm
Procedure p0r(n, i, j)
Parameter n: number of discs {n ∈ N0}
Parameter i: source peg {i ∈ T }
Parameter j: goal peg {j ∈ T }

if n ≠ 0 and i ≠ j then
k ← 3 − i − j {the auxiliary peg different from i and j}
p0r(n − 1, i, k) {transfers n − 1 smallest discs to auxiliary peg}
move disc n from i to j {moves largest disc to goal peg}
p0r(n − 1, k, j) {transfers n − 1 smallest discs to goal peg}

end if

The recursive argument, however, can be used for a wealth of useful state-
ments about the optimal solution. For instance, let us try to characterize those
states s ∈ T n which belong to the shortest path from in to jn, say. We interpret
the bottom of pegs i, 3−i−j, j as (immovable) discs n+1, n+2, n+3, respectively.
Moreover, we call a legal arrangement (i.e. with no larger disc on a smaller one)
of at most n (movable) discs on a fixed peg admissible (with respect to i and j), if
the discs (including the immovable one) on that peg appear in alternating parity.
Then the following holds (cf. [331, Theorem A]).

Proposition 2.3. A state s ∈ T n belongs to the optimal solution path from in to
jn if and only if s is admissible, i.e., the corresponding arrangements on all three
pegs are admissible.

Proof. We prove by induction that there are 2n admissible states in T n with
respect to i and j and that all (2n) states on the shortest path from in to jn are
admissible.

For n = 0, we just note that the empty arrangement on a peg (i.e., only the
immovable disc is present) is admissible.

Let s ∶= sn−1 . . . s1. Then s = sns is admissible with respect to i and j if and
only if sn ∈ {i, j} and s is admissible in T n−1 with respect to sn and 3 − i − j.
Therefore, by induction assumption, there are 2 ⋅ 2n−1 = 2n admissible states in
T n. The first 2n−1 states on the optimal path from in to jn are those where sn = i,
i.e., the largest disc n is lying on a(n immovable) disc of different parity, and s

belongs to the shortest path from in−1 to (3 − i − j)n−1 such that s is admissible
with respect to i and j because disc n replaces the immovable disc n + 1. The
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same argument applies for the last 2n−1 states, where now disc n is on disc n + 3
of opposite parity. ◻

The characterization of states on the optimal path can be used for another
“human” algorithm; see Exercise 2.5. Moreover, there is a fascinating relation be-
tween admissible arrangements on a peg and Fibonacci numbers; see Exercise 2.6.

By a recursive argument, we also obtain the following information about the
number and direction of moves of individual discs.

Proposition 2.4. In the optimal solution to move an n-tower from peg i to peg j,
disc d ∈ [n] is moved in moves (2k + 1)2d−1, k ∈ [2n−d]0, i.e. 2n−d times, and in
every move

[(j − i) ((n − d) mod 2 + 1)]mod 3

is added (modulo 3) to the position of d.

The proof of this result is left for Exercise 2.7. It shows that every odd disc
moves cyclically like disc 1, the others in reversed cycles. This statement has been
used as an example to demonstrate the associativity of the equivalence of boolean
values in [21].

Olive’s sequence can now easily be calculated from the index (move number)

` ∈ N in binary representation
∞

∑
ν=0

`ν2
ν . In fact, we may identify o with the sequence

in B × T , where (b, i) stands for i, if b = 0 and for i itself if b = 1. Then

o` = (g` mod 2, `mod 3) (2.2)

because by the definition of o, which assumes that disc 1 moves to peg 2 first, we
are in the case i = 0, j = 2 with n odd of Proposition 2.4 such that odd moving
discs correspond to b = 1 and even discs to b = 0; by Theorem 2.1 the moving disc is
g`. The formula (2.2) is truly remarkable! It demonstrates in one line the genius of
Lucas when he extended the binary-based CR to the ternary TH and of his nephew
Raoul who unveiled the interplay of the two number systems in the TH, essentially
engendered by the identity 2n mod 3 = 2n mod 2 which we already encountered in
the solution of Exercise 1.5. The calculation of `mod 3 can be done very efficiently
with the aid of the automaton in Figure 2.3 (case n is odd), and we know from
Corollary 1.11 that g` ∶= g` mod 2 = 0 if and only if the binary representation of `
ends with an odd number of bits 0. The automaton of Allouche and F. Dress in
[8, Figure 2] also determines the Olive sequence, but entering the bits of ` from
the right it needs 14 states. As remarked in [8, p. 13], the barred idle pegs are in a
1 ∶ 2 minority with respect to the unbarred ones in Olive’s sequence; see also [144,
p. 261]. Allouche and co-workers emphasize the automatic generation of sequences
like Olive’s by means of the Toeplitz transform: if in the formal infinite sequence
(1 20 ◇ 2 01 ◇ 0 1 2◇)∞ the diamonds are successively replaced by the sequence
itself, then the limit is o [6, Section 4]. This offers a unified approach covering
also the paper-folding sequence f we met in Chapter 1 if the Toeplitz transform is
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applied to (1 ◇ 0◇)∞ [6, Section 2]. But what would Lucas and Olive have thought
about their post-bourbakian compatriots and associates who in [5, Corollary 5]
characterize Olive’s sequence as “a fixed point of a 2-uniform homomorphism” on
(B × T )N?2

The sequence (g`)`∈N (cf. [296, A035263]) is interesting in its own right;
(1 − g`+1)`∈N0

is the period-doubling sequence of [11, Example 6.3.4] (cf. [296,
A096268]). From Proposition 1.10 we deduce:

g` = { 1, ` odd;

1 − g`/2, ` even.

Moreover, if we define tk = (
k

∑̀
=1

g`)mod 2 for k ∈ N0, we obtain from (1.6) that

tk = q(k)mod 2, whence the sequence t fulfills the recurrence

t0 = 0, ∀k ∈ N0 ∶ t2k+1 = 1 − tk, t2k+2 = tk+1 .
So t = 0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0, . . . is the well-known Prouhet-Thue-Morse
sequence (cf. [10]). Subsequent substitution of a for (0,1,1), b for (0,1), and c for (0)
leads to the Thue sequence a, b, c, a, c, b, a, b, c, b, a, . . ., which is square-free over the
three-letter alphabet {a, b, c}. (A square-free sequence over a two-element alphabet
cannot be infinite; it ends already after three entries.)

Coming back to the general in → jn task, we can also provide a recipe

(cf. [298, p. 103f]) to specify the move with number ` = n−1

∑
ν=0

`ν2
ν making use of

only some portion of the bits of `. If ` = 2d−1, then disc d moves to an empty peg;
this is unique but for the very first move which goes to the goal peg if and only
if n is odd. Otherwise, consider the smallest discs d1 < d2 with `d1−1 = 1 = `d2−1

and move d1 onto disc d2 if of different parity or else to the peg not occupied by
d2. This works because ` is the first move of any disc in [d2]0 ∖ [d1]0 after d2 has
made a move and therefore the tower of discs smaller than d1 either rests on top
of disc d2 or d1 can move there, which by Proposition 2.3 is only possible if they
are of different parity.

Proposition 2.4 also leads to Algorithm 5, which provides initial peg i` and
goal peg j` for any individual move ` ∈ [2n−1] explicitly (cf. [141, Proposition 1]).

An immediate consequence is the parallel Algorithm 6, containing a formula
which gives the position sd of disc d ∈ [n] after move ` ∈ [2n − 1] (cf. [135, Fol-
gerung 3]), this position being equal to the last goal of disc d up to move ` (cf. [141,
Proposition 2]).

In particular, this algorithm allows us to determine the state s on the shortest
path from 0n to 2n, say, whose distance from 0n is equal to an ` ∈ [2n]0 given by

2The homomorphism is generated by (b, i) ↦ ((0,1 ◁
i), (1 − b,0 ◁

i)); for the definition of
◁

see Table 2.2 below.
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Algorithm 5 Determination of move
Procedure p0m(n, i, j, `)
Parameter n: number of discs {n ∈ N0}
Parameter i: source peg {i ∈ T }
Parameter j: goal peg {j ∈ T }
Parameter `: move number {` ∈ [2n − 1]}

d← g` {disc moved in move number `}

k ← `

2d
− 1

2
{` = 2d−1(2k + 1)}

i` ← (k(j − i) ((n − d)mod 2 + 1) + i)mod 3

j` ← ((k + 1)(j − i) ((n − d) mod 2 + 1) + i)mod 3

Algorithm 6 Parallel algorithm
Procedure p0p(n, i, j, `, d)
Parameter n: number of discs {n ∈ N0}
Parameter i: source peg {i ∈ T }
Parameter j: goal peg {j ∈ T }
Parameter `: move number {` ∈ [2n − 1]}
Parameter d: disc number {d ∈ [n]}

sd ← (⌊ `
2d
+ 1

2
⌋ (j − i) ((n − d)mod 2 + 1) + i)mod3

its binary representation
n−1

∑
ν=0

`ν2
ν . This corresponds to applying Gray coding to `

to obtain the state with that distance from α(n) in the CR (cf. Section 1.1). In
fact, putting i = 0 and j = 2 in Algorithm 6, we get, after some straightforward
manipulation,

sd = (`d−1 + `d + 2`d+1 + `d+2 +⋯+ 2`n−2 + `n−1)mod 3, if n − d is odd, (2.3)

sd = (2`d−1 + 2`d + `d+1 +⋯ + 2`n−2 + `n−1)mod 3, if n − d is even. (2.4)

This compares to the recipe given without proof in [34, p. 862]. There the example
of a 7-disc tower after 13 steps is shown, i.e. the case n = 7 and ` = 1310 = 00011012;
from Equations (2.3) and (2.4) one gets s = 0001102.

The parallel algorithm is also a special case of a spreadsheet solution in the
sense of B. Hayes in [131]. The position of disc d after ` ∈ [2n]0 moves in the
shortest path from 0n to 2n can be determined simultaneously in each cell of an
n × 2n-grid by one and the same formula; see Figure 2.4 for the example n = 4.
This shows how time can be traded for memory.

Another elegant algorithm to determine the state after ` moves in the optimal
path from 0n to 2n, and hence by relabelling for any initial and terminal pegs, can
be based on an observation by Er [90, p. 150f]. It is shown here as Algorithm 7.
The correctness proof is by induction. Note that the sign in front of `d−1 in the
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4 2222222200000000

103 22221111111000

2 2200001111222200

2221100221 110 1100

1514131211100 1 2 3 4 5 6 7 8 9d
`

Figure 2.4: Spreadsheet solution for 4 discs

allocation of the value of sd determines the move direction and that the initial peg
i is modified after a move of disc d. The reader is invited to test the algorithm
with the example preceding the previous paragraph.

Algorithm 7 Alternative parallel algorithm
Procedure p0pa(n, `)
Parameter n: number of discs {n ∈ N}
Parameter `: move number {` ∈ [2n]0 in binary representation}

i← 0

for d = n downto 2

sd ← (i − `d−1 ((n − d)mod 2 + 1)) mod 3

i← (i + `d−1(i − sd))mod 3

end for
s1 ← (i + `0(nmod 2 + 1))mod 3

It is now natural, in particular in view of the activities of the Brahmins in
Benares, to ask the inverse question, namely given a distribution of discs some-
where on the optimal path from 0n to 2n, say, to determine how many moves
have led to this state. We can use the fact that by Theorem 2.1 this path Pn has
length 2n − 1 and is therefore, by Theorem 1.1, isomorphic to the CR graph Rn.
Moreover, starting Pn in 0n we can in parallel traverse Rn, beginning in state
α(n), by replacing a move of disc d in Pn by a move of ring d in Rn. Since the
disc/ring number follows the Gros sequence in both path graphs, every state s on
Pn is uniquely specified by the values, for all d ∈ [n], of s̃d ∈ B, being defined as
the number of moves, taken modulo 2, made by disc, and hence ring, d to arrive at
s, respectively s̃. The mapping s↦ s̃ is therefore an isomorphism between Pn and
Rn. In particular, d(s,0n) = d(s̃), and the latter can easily be calculated using
the Gros automation in Figure 1.3. If we put sn+1 = 0, s̃ can be obtained from
s as s̃d = (sd ≠ sd+1), a formula which can be proved by induction on n mak-
ing use of the symmetry with respect to the move of the largest disc as reflected
in Proposition 2.2. Combined, we obtain an algorithm to determine the bits of



82 Chapter 2. The Classical Tower of Hanoi

d(s,0n) = ∑n
ν=0 `ν ⋅ 2ν with `n = 0 without recourse to the CR as

∀d ∈ [n] ∶ `d−1 = `d + (sd ≠ sd+1) , (2.5)

where the addition is modulo 2. This is the recipe which has already been given
by P. H. Schoute [286, p. 286f].

We are now in the position to determine the age of the universe and conse-
quently how much time the Brahmins will leave us to stay alive; see Exercise 2.8.

The isomorphism between the optimal path in the TH and the CR graph
has been used implicitly, without mentioning the CR, by D. W. Crowe in [61]
to establish a connection between a hamiltonian cycle on the n-dimensional cube
and the TH. We have seen in Chapter 1 that the connection is actually with the
CR; cf. Exercise 1.10. For the same reason many of the early workers on the TH
considered the game to be equivalent to the CR, an opinion still shared by some
more recent authors (cf. the “TH networks” in Chapter 1). However, contrary to
the Brahmins, mere mortals do make mistakes and go astray from the optimal
path. We will now see that this little flaw in human nature will turn the TH from
an isomorph of the trivial CR to a mathematically challenging object.

2.2 Regular to Perfect

In the previous section we showed how to transfer the whole tower of discs from
one peg to another. Now we move to the question how to reach a perfect state
from an arbitrary regular state; we call this problem type P1.

We first consider the special case in which the optimal solution has been
abandoned at some stage, in state s say. (Imagine the situation when one monk
transfers his duties to another one.) Then it is still possible to continue with the
following insight from the considerations in Section 2.1: odd numbered discs move
cyclically in the same direction as disc 1, and even discs move cyclically the other
way round. This will be called the right direction for the disc. Algorithm 8 provides
the optimal first move after which one may continue with Olive’s procedure.

The algorithm is illustrated in Figure 2.5 with two states. In both cases we
have six discs, hence the right direction of the even discs is the same in both cases.
In state 012002, the legal move of disc 2 is in its wrong direction, therefore the
next optimal move is the move of disc 1 in its right direction. In the state 012000,
the legal move of disc 4 is in its right direction, hence this move is the optimal
next move.

Before we can employ Algorithm 8 to resume an abandoned solution, we have
to check whether s indeed lies on the optimal path from i to j. This can be done
in Algorithm 9 by building an automaton from Figure 2.6 that we will call the
P1-automaton.

On a more formal level, this automaton realizes the binary operation

i
◁
j = 2(i + j)mod 3, i, j ∈ T ,
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Algorithm 8 Optimal first move from abandoned state
Procedure p1a(n, i, j, s)
Parameter n: number of discs {n ∈ N}
Parameter i: source peg {i ∈ T }
Parameter j: goal peg {j ∈ T }
Parameter s: regular state on the optimal path {s ∈ T n}

let d be the smallest top disc of s different from 1
if the legal move of d is in the right direction then

move disc d

else
move disc 1 in the right direction

end if

0

5

2

1

3

4

6

2

move direction
of even discs

s = 012002

legal move in
wrong direction

1

1

0

5

2

1

3
6

2

move direction
of even discs

s = 012000

legal move in
right direction

4

Figure 2.5: Move directions of discs

0

1 2
0

12

Figure 2.6: P1-automaton

namely starting in state j of the automaton, the change of state according to i

will end in state i
◁
j. Note that i

◁
j = 3 − i − j, if i ≠ j and i

◁
j = j otherwise.
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Therefore, a missing label means no change of state of the automaton, as it is
the case for all automata presented in this book. The idea to use this kind of
automaton for TH problems goes back to Stockmeyer (cf. [314, Figure 2]). Let us
mention, however, that on an even more abstract level (T, ◁) forms a quasigroup,
i.e. the Cayley table of ◁ on T is a latin square where each of the three elements
of T occurs once in every row and once in every column; see Table 2.2. In a latin
square on numbers, the rows and columns obviously add up to the same sum. In
our case also the diagonals do. Viewed modulo 3, our table even gives 0 for the
sum on the broken diagonals. It’s a kind of magic! The binary operation ◁ on T

appears already in [287, p. 248], and (T, ◁) can also be viewed as the smallest
non-trivial Steiner quasigroup.

◁
0 1 2

0 0 2 1

1 2 1 0

2 1 0 2

Table 2.2: Cayley table for ◁ on T

Algorithm 9 Detection of deviation from optimal path
Procedure p1d(n, i, j, s)
Parameter n: number of discs {n ∈ N}
Parameter i: source peg {i ∈ T }
Parameter j: goal peg {j ∈ T }
Parameter s: regular state on the optimal path {s ∈ T n}

k ← 3 − i − j {state of the P1-automaton}
for d = n downto 2

if sd = k then
s is not on the optimal path, STOP

else
k ← 3 − k − sd {updated state of the P1-automaton}

end if
end for
if s1 = k then
s is not on the optimal path, STOP

end if
s is on the optimal path

Theorem 2.5. Algorithm 9 detects whether the state s is on the optimal path from
the source peg i to the goal peg j.
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Proof. Let k = 3 − i − j. We proceed by induction on n. Obviously, the algorithm
works correctly for n = 1. Let n ∈ N and s ∈ T 1+n. If sn+1 = k, then s is not on the
right track, because the largest disc just moves from i to j. If sn+1 = i, then we
move to state j of the P1-automaton. The n-tower has to be moved from i to k

and therefore the roles of i, j, k have changed to i, k, j; but then the P1-automaton
does the right thing by induction assumption. Similarly for sn+1 = j. ◻

In Figure 2.7 we apply Algorithm 9 to the state s = 212210 where i = 0 is the
source peg and j = 2 is the goal.

s n i j i j=212210,   =6 (even), =0, =2, start in 3- - =1

d s=6, =6 21 5
2

6
4
3

10 2

0

1 2

1

0

2

d s=5, =5 11 5
2

6
4
3

10 2

0

1 2

1

0

2

s

s not
4=

is on optimal path

current state

d s=4, =4 21 5
2

6
4
3

10 2

0

1 2

1

0

2

Figure 2.7: Algorithm 9 stops after checking 3 tits.

Algorithm 9 stopped already after 3 tits for s = 212210. This is in fact the ex-
pected value of checks! To state this result rigorously, let us introduce the notation
3 for 2/3. (This was a special fraction in Ancient Egypt; cf. [110, p. 21].)

Theorem 2.6. The number of tits checked on average by Algorithm 9 is

3 (1 − 3
n) .
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Proof. The algorithm stops after the input of ` ∈ [n − 1] tits if and only if each
sn−m, m ∈ [` − 1]0, is different from the current state of the P1-automaton and
sn−`+1 is equal to the current state. In this case, the tits sd, d ∈ [n − `], are
arbitrary. Hence the algorithm stops after the input of ` tits for exactly 2`−1 ⋅ 3n−`
states. Consequently, it needs the full n tits just for the remaining 2n−1 ⋅ 3 states.
(Equivalently, it checks n tits if and only if s2 to sn are different from the current
state and s1 is arbitrary.) So for all states together only

1

2

n−1

∑̀
=1

` 2` 3n−` + 3n2n−1 = 1

2

n

∑̀
=1

` 2` 3n−` + n2n

tits are used, i.e. on the average

1

2

n

∑̀
=1

` 3
` + n 3

n
.

By formula [113, (2.26)] this is equal to

1

2

3 − (n + 1) 3 n+1 + n 3
n+2

(1 − 3 )2
+ n 3

n = 3 (1 − 3
n)

as claimed. ◻
In Figure 2.8 we apply Algorithm 9 to the state s = 012002. It turns out that

s lies on the optimal path between perfect states on pegs 0 and 2, hence we can
resume this path with the aid of Algorithm 8.

In view of the example from Figure 2.7, namely s = 212210, it is now nat-
ural to ask whether the game can still be continued, if s is found to be off the
optimal path, a situation quite typical for human problem solvers. In fact, when
the classical task to transfer a tower from one peg to another one is administered
to subjects in psychological tests, the majority of them start moving discs around
and do not wait until the optimal solution has been found by planning ahead.
After this “chaotic starting phase” the test person finds himself in some more or
less arbitrary state s ∈ T n and usually does not remember how he got there. The
goal, a perfect tower on peg j, say, is still present in his mind and he is facing a
problem of type P1, namely to get from a given regular to a preassigned perfect
state with the least possible number of moves (cf. [204, Lemma 4, Theorem 1] and
[141, Theorem 3]).

Theorem 2.7. The task to get from a regular state s ∈ T n to the perfect one on peg
j ∈ T has a unique optimal solution of length ≤ 2n − 1. Moreover, if s ≠ jn, then in
the course of this solution the largest disc which is not on peg j in the state s is
moved precisely once, and the larger discs are not moved at all.
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Figure 2.8: Algorithm 9 detects that the state on the left is on the optimal path
from peg i = 0 to peg j = 2.
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Proof. It is clear that the larger discs are not moved at all because the moves of
those discs could just be deleted to arrive at a shorter solution. We may therefore
assume that the largest disc is not on peg j.

We proceed by induction. Let s = sn+1s with sn+1 ≠ j and s ∈ T n. If disc n+1
were to move more than once, this would involve at least 2(2n − 1) moves of discs
smaller than n+ 1 between the first two moves of disc n+ 1 and after the last one,
resulting in at least 2n+1 moves. However, the combination of the unique optimal
solution from s to peg 3−sn+1−j, the move of disc n+1 from sn+1 to j and finally
the unique optimal transfer of the n-tower from 3−sn+1−j to j results in a unique
optimal solution of length less than 2n+1. ◻

In the sequel we will denote the length of an optimal solution to get from a
state s to the perfect state on peg j by d(s, jn). In this notation, Theorem 2.7 in
particular says that d(s, jn) ≤ 2n − 1 holds for any state s. An easy but important
consequence of this is the following.

Lemma 2.8. State s ∈ T n, n ∈ N, is uniquely determined by the three values d(s, kn),
k ∈ T .

Proof. Induction on n. The case n = 1 is trivial. Let i ∈ T and t ∈ T n, n ∈ N. Then,
by Theorem 2.7,

d(it, i1+n) = d(t, in) < 2n, (2.6)

and, together with Theorem 2.1,

d(it, j1+n) = d (t, (3 − i − j)n) + 2n ≥ 2n, j ∈ T ∖ {i}. (2.7)

Therefore, given s = sn+1s with sn+1 ∈ T and s ∈ T n, tit sn+1 is given as the k ∈ T
for which the value d(s, k1+n) is less than 2n, i.e. the smallest. Moreover, the three
values d(s, kn) are given by the equalities in (2.6) and (2.7), so that by induction
assumption also s is uniquely determined. ◻

The formula in (2.5) for states s lying on the optimal path from 0n to 2n

does not hold for other s in general; for instance, d(20,00) = 3, where (2.5) would
give 2. But although the easy recipe of Exercise 2.5 cannot be carried over for
a practical solution to a P1 task, we nevertheless observe the following (cf. [332,
p. 412]).

Proposition 2.9. Suppose that during the optimal solution of a P1 task, disc d /= 1
is moved. Then the next step is a move of disc 1, and it moves onto d if and only
if d is even.

Proof. Again, this is done by induction on the number of discs n ≥ 2. For n = 2,
disc 1 has to move atop disc 2 after the latter’s only move. For the induction step
we may assume that disc n + 1 is originally not on its goal peg, in which case it
moves exactly once. Before this move the induction assumption applies. The move
of disc n+ 1 is followed by a transfer of a perfect n-tower onto disc n+ 1 and here,
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according to Olive’s solution, the first move, necessarily by disc 1, is to the goal
peg if and only if n is odd, i.e. n + 1 is even. ◻

Since obviously no two moves of disc 1 follow each other immediately, we are
left with finding the best first move. This is achieved in Algorithm 10 (cf. [143,
p. 178]), again by recourse to the P1-automaton.

Algorithm 10 Best first move to a perfect state
Procedure p1(n, s, j)
Parameter n: number of discs {n ∈ N}
Parameter s: regular state {s ∈ T n}
Parameter j: goal peg {j ∈ T }

µ← 0 {length of path}
δ ← n + 1 {active disc}
k ← j {state of the P1-automaton}
for d = n downto 1

if sd ≠ k then
µ← µ + 2d−1
δ ← d

k ← 3 − k − sd {updated state of the P1-automaton}
end if

end for

Theorem 2.10. Algorithm 10 returns the length µ of the optimal path from the
regular state s to the goal peg j and, for s ≠ jn, the disc δ to be moved in the
first move of that path. Moreover, the idle peg, i.e. the peg not involved in that
move, is given by the final state k of the P1-automaton, i.e. the move is from sδ
to 3 − k − sδ.
Remark 2.11. For n = 0 or s = jn, Algorithm 10 returns µ = 0, δ = n+1, and k = j.
The first value is, of course, trivial, the last two are void, but will be needed in a
future algorithm.

Proof of Theorem 2.10. We again proceed by induction. Let s = sn+1s, s ∈ T n. If
sn+1 = j, then, by Theorem 2.7, the largest disc does not move, and the induction
hypothesis can be applied to s. Otherwise, s has to be brought to peg 3− sn+1 − j
to allow for the single move of disc n + 1 from sn+1 to j. In this case another
1 + 2n − 1 = 2(1+n)−1 moves have to be carried out, and disc n + 1 moves first only
if s is already perfect on 3 − sn+1 − j. ◻

For an early example of a P1 task, see Exercise 2.9.

Remark 2.12. In formal terms, the application of Algorithm 10 amounts to the
expression k = s1 ◁ ⋯ ◁

sn
◁
j. (Note that the operation ◁ , although commutative,

is not associative; therefore, concatenate expressions have always to be read from
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the right.) Since k
◁
i ≠ k ◁

j, if i ≠ j, we deduce that applications of the algorithm
to the same s, but different goal pegs, will lead to different resulting final states
of the P1-automaton, i.e. different idle pegs for the best first move. Moreover,
except for s = (3 − i − j)n, the distances d(s, in) and d(s, jn) will not be equal; see
Exercise 2.10.

A comparison of Algorithms 9 and 10 shows that s is on the optimal path
from in to jn if and only if d(s, kn) = 2n − 1, {i, j, k} = T . More generally, we get
the following nice invariant.

Proposition 2.13. For any s ∈ T n,

d(s,0n) + d(s,1n) + d(s,2n) = 2 ⋅ (2n − 1) .
Proof. If we run Algorithm 10 in parallel for all three goal pegs, then the if-clause
will add each value 2d−1 precisely twice. Therefore,

d(s,0n) + d(s,1n) + d(s,2n) = 2 ⋅ n

∑
d=1

2d−1 = 2 ⋅ (2n − 1) . ◻

Remark 2.14. From Proposition 2.13 it follows that in Lemma 2.8 in fact two of
the values d(s, kn) suffice to identify s ∈ T n. This can be compared to the Gray
code in Section 1.1. Moreover, suppose that we make a single legal move away
from s. Then we have approached one perfect state by one step, moved away from
another one by one step, and stay at the same distance from the third one. Indeed,
this follows from Lemma 2.8 and Proposition 2.13, as elaborated in Exercise 2.11.

The following immediate consequence of Proposition 2.13 has been found,
without minimality considerations though, by Er [86, Equation (6)] and by F. Scar-
ioni and M. G. Speranza [281], who in their Theorem also give the variance
2(4n − 1)/27.
Corollary 2.15. The average distance of states in T n, n ∈ N0, from a fixed perfect
state is 3 (2n − 1).
Proof. If we sum the formula in Proposition 2.13 for all s ∈ T n and divide by the
number 3n of these states, we get, by symmetry, three times the average distance
from a specific perfect state. ◻

Another immediate implication of Proposition 2.13 is the number of states
realizing the worst-case distance from a specific perfect state; see Exercise 2.12.
This is a special case of the following result [141, Proposition 5] (also implicitly
contained in the exceeding formula of [282, Theorem 4.6]); recall that q(m) is the
number of 1s in the binary representation of m as on p. 61.

Proposition 2.16. Let jn be a fixed perfect state. Then for µ ∈ [2n]0:
∣{s ∈ T n ∣ d(s, jn) = µ}∣ = 2q(µ) .
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Proof. According to Algorithm 10, µ is the sum of 2d−1 for those discs d where the
P1-automaton changed its state because sd was different from the previous one.
There are two possibilities for this to happen. ◻

An immediate consequence is the following.

Corollary 2.17. For all n ∈ N0:
2
n−1

∑
µ=0

2q(µ) = 3n.

For the next result we will need an elementary, but extremely useful lemma
which can hardly be found in textbooks (cf., however, [192, p. 151–153]).

Lemma 2.18. Let α, β ∈ R, a, b ∈ RN0 . Then

a) ∀n ∈ N0 ∶ an+1 = αan + bn⇔∀n ∈ N0 ∶ an = αna0 +
n−1

∑
k=0

αkbn−1−k ,

b) ∀n ∈ N0 ∶ (β − α)
n−1

∑
k=0

αkβn−1−k = βn − αn .

Proof. From the recurrence relation on the left-hand side of (a) we derive

∀n ∈ N0 ∶
n−1

∑
k=0

αkan−k =
n−1

∑
k=0

αk+1an−k−1 +
n−1

∑
k=0

αkbn−k−1 ,

from which the right-hand side of (a) follows for n ∈ N by cancelling equal terms;
the case n = 0 is trivial.

For the converse implication we have

an+1 − αan = αn+1a0 +
n

∑
k=0

αkbn−k − αn+1a0 −
n−1

∑
k=0

αk+1bn−1−k = bn .

Putting an = βn and bn = (β − α)βn in (a) we obtain (b). ◻
We can now approach a somewhat more complex task of type P1.

Proposition 2.19. Let s ∈ TN , N ∈ N0, with sd = d mod 2 for all d ∈ [N]. Then

d (s, sNN) = ⌊372
N⌋ , d (s,2N) = ⌊5

7
2N⌋ , d (s, (1 − sN)N) = ⌊6

7
2N⌋ .

Remark 2.20. The three distances in Proposition 2.19 are from a state where the
discs are ordered according to parity to the perfect state on the peg where the
largest disc initially lies, to the peg where no disc lies, and to the peg where the
second largest starts, respectively. This type of tasks has been posed several times
in literature, mostly in the case of even N = 2n, where n even numbered discs on
peg 0 and n odd numbered discs on peg 1 have to be reunited on either peg 1 [75,
p. 76] or the third peg 2. The latter problem was formulated by H. Noland in [245].
It was solved by A. J. van Zanten in [350] for odd N as a lemma for yet another
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task, the Twin-Tower problem to be discussed later in Section 6.2. S. Obara and
Y. Hirayama asked in [248] to sort a perfect tower into odd and even discs on
the two other pegs; see Figure 2.9. Although this is, of course, mathematically
equivalent to the inverse task, it seems that the human problem solver has more
difficulties to reach a non-perfect state from a perfect one than vice versa. Without
the requirement that the sorted discs end up on the pegs different from the starting
position, the sorting task can be fulfilled in d(s, sNN ) moves.

Figure 2.9: Sorting golden (even) and silver (odd) discs

Proof of Proposition 2.19. Let

xN ∶= d (s, sNN) , yN ∶= d (s,2N) , zN ∶= d (s, (1 − sN)N) .
Since all tasks are of type P1, the largest disc will move at most once and we have

xN = yN+1 − 2N , xN+1 = zN , xN+2 = yN + 2N ,

and consequently

x0 = 0 , x1 = 0 , x2 = 1 , xN+3 = xN + 3 ⋅ 2N ;

y0 = 0 , y1 = 1 , y2 = 2 , yN+3 = yN + 5 ⋅ 2N .

We can solve these recurrences in six steps using Lemma 2.18. For example, let
N = 3n, n ∈ N0. Then, with α = 1, β = 8, an = x3n, and bn = 3 ⋅ 8n we get

x3n = 3
n−1

∑
k=0

8n−1−k = 3

7
(8n − 1) .

Similarly, we obtain

x3n+1 = 6

7
(8n − 1), x3n+2 = 12

7
8n − 5

7
,

altogether xN = ⌊ 372N⌋ , zN = ⌊672N ⌋ .
In the same way we get

y3n = 5

7
(8n − 1), y3n+1 = 10

7
8n − 3

7
, y3n+2 = 20

7
8n − 6

7
,
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whence yN = ⌊572N ⌋ . ◻
A solution of this type to Noland’s problem was given by D. G. Poole in [262].

N. F. Lindquist [196] observed that for tn ∶= y2n the following recurrence holds:

t0 = 0 , t1 = 2 , t2 = 11 , tn+3 = tn + 45 ⋅ 4n .
Yet another way to solve the tasks of Proposition 2.19 can, of course, be

based on the P1-automaton with the advantage that the best first move, and
consequently the complete optimal solution will be obtained. For instance, in the
task to reunite all discs on the peg which is originally empty (corresponding to
the sequence yN ) one finds that the best first move has idle peg (N + 2)mod 3.
The sorting problem of Figure 2.9 is slightly more subtle; see Exercise 2.13.

In general, the state of the P1-automaton immediately before the evaluation
of disc d ∈ [n] in Algorithm 10 can be interpreted as the first goal of disc d (cf. [85]),
denoted by

(s ◁
j)d ,

to make the best first move possible in the course of the optimal solution to get
from state s to the perfect state on peg j. Note that (s ◁

j)d = sd+1 ◁ ⋯ ◁
sn

◁
j for

d ∈ [n], and (s ◁
j)0 ∶= s1 ◁ ⋯ ◁

sn
◁
j is the idle peg in the best first move, which

can be interpreted as the first goal of the “thimble” (cf. p. 74). Moreover (cf. [141,
Theorem 3]),

d(s, jn) = n

∑
d=1

(sd ≠ (s ◁
j)d) ⋅ 2d−1 . (2.8)

Applying this to Noland’s problem with 2n discs, we easily see that

∀d ∈ [2n] ∶ sd = (s ◁
2)d⇔ (2n − d) mod 3 = 1 ,

such that

y2n =
2n

∑
d=1

(sd ≠ (s ◁
2)d) ⋅ 2d−1

= 22n − 1 − 2n

∑
d=1

((2n − d) mod 3 = 1) ⋅ 2d−1

= 22n ⎛⎝1 −
1

4

⌊2(n−1)/3⌋

∑
k=1

8−k
⎞
⎠ − 1 = ⌊

5

7
4n⌋ ,

where use has been made of Lemma 2.18 again.
Let us finally mention that Lu proposed in [204, Section 4] an algorithm to

get from a perfect to an arbitrary regular state, by which means he also arrives at
Proposition 2.13 ([204, Corollary 1]).
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2.3 Hanoi Graphs

In Section 2.2 we introduced the set T n in order to accommodate all regular states
of the Tower of Hanoi with n discs. A graph structure on T n is now imposed by
the prototype Rn in Chapter 1. Theorem 2.7 suggests to unite all shortest paths
ending in the perfect state 0n, say. This would result in a binary tree with vertex
set T n, root 0n and height 2n − 1; cf. Er [86]. However, although all states of the
Tower of Hanoi with n discs will be represented in this tree, its edge set does not
comprise all admissible moves. Their inclusion will allow us to discuss more general
tasks in the rest of this chapter as well as new views on facts already presented.

Two vertices from the vertex set T n (that is, regular states) are adjacent if
they are obtained from each other by a legal move of one disc. We call this graph
on 3n vertices, first considered by Scorer et al. [290], the Hanoi graph (cf. [204,
p. 24]) for n discs and 3 pegs and denote it by Hn

3 . The degree sequence of Hn
3 is

very simple; cf. Exercise 2.14. In analogy with Remark 1.3 we can state formally

V (Hn
3 ) = T n,

E(Hn
3 ) = {{si(3 − i − j)d−1, sj(3 − i − j)d−1} ∣ i, j ∈ T, i ≠ j, d ∈ [n], s ∈ T n−d} ;

(2.9)

here each edge represents a move of disc d between pegs i and j, which is inde-
pendent of the distribution s of larger discs, i.e. the bottom n − d discs.

This immediately leads to colorings of Hanoi graphs.

Proposition 2.21. For any n ∈ N, χ(Hn
3 ) = 3 = χ′(Hn

3 ). Moreover, the function
s ↦ (∑n

d=1 sd)mod 3 defines a vertex coloring of Hn
3 ; the label of the idle peg of

the move associated with an edge defines an edge coloring.

Proof. The second part of the statement follows from the fact that every edge
represents the change of precisely one tit in the adjacent vertices. Moreover, all
edges coming together in a fixed state correspond to moves with different idle
pegs, two for the moves of disc 1, and the position of disc 1 in case another disc is
moving. See Figure 2.10 for an illustration.

By the above, χ(Hn
3 ) ≤ 3 and χ′(Hn

3 ) ≤ 3. To complete the argument note
that for s ∈ T n−1, the states s0, s1, and s2 induce a complete graph on 3 vertices.

◻
The question to find total colorings for Hanoi graphs is somewhat more subtle

and therefore left as Exercise 2.15.
The size of Hn

3 is the topic of Exercise 2.16. To illustrate the recursive struc-
ture of Hanoi graphs, Figure 2.11 shows the standard drawings of the first four
Hanoi graphs. The trees mentioned above are obtained from these graphs by delet-
ing all horizontal edges.

We observe that H1+n
3 is composed of three subgraphs iHn

3 , i ∈ T , induced by
the vertex sets iT n, any two of these subgraphs, say iHn

3 and jHn
3 , being joined
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Figure 2.10: The graph H4
3 with 3-edge coloring
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Figure 2.11: Hanoi graphs H0
3 , H1

3 , H2
3 , and H3

3

by precisely one edge, the edge between ikn and jkn, k = 3− i− j. See Figure 2.12.
Planarity of Hn

3 is then obvious; cf. [290, p. 97].
Note that the order of the perfect states in the graphical representation of the
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1H n
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1+n
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n

21 10n 20n1+n 1+n

H n1+
3

Figure 2.12: Recursive structure of Hanoi graphs

subgraphs iHn
3 have to be chosen appropriately. More precisely, these subgraphs

are reflected at the vertical axis through i0n, and 1Hn
3 and 2Hn

3 are rotated by 120○

clockwise or counter-clockwise, respectively. This recursive labelling procedure is
schematically explained in Figure 2.13. For an alternative visualization, see [308,
Figure 4].
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n
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2n1n
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n
3

H

1H n
3

2H

H n1+
3

120o

0

H

Figure 2.13: Recursive composition of labels of H1+n
3
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The formal recursive definition of the edge sets of the Hanoi graphs Hn
3 is

(cf. Equation (1.1))

E(H0

3) = ∅,
∀n ∈ N0 ∶ E(H1+n

3 ) = {{ir, is} ∣ i ∈ T, {r, s} ∈ E(Hn
3 )}

∪ {{i(3 − i − j)n, j(3 − i − j)n} ∣ i, j ∈ T, i ≠ j} . (2.10)

Many properties of Hanoi graphs can be deduced from their recursive struc-
ture, like obviously connectedness or, more precise, 2-connectedness.

Proposition 2.22. The connectivity of Hn
3 , n ∈ N, is κ (Hn

3 ) = 2.
Proof. Deleting the two neighbors of a perfect state will separate the latter from
the rest of the graph. To show that the deletion of only one vertex is not sufficient,
we employ induction: for H1

3 ≅K3 this is clear; otherwise, by induction assumption,
H1+n

3 could only be disconnected by deleting a vertex ikn and an edge {ikn, jkn}
with ∣{i, j, k}∣ = 3, but then two vertices from iHn

3 and jHn
3 , respectively, are still

linked by a path through edges {ijn, kjn} and {kin, jin}. ◻
Another quality is hamiltonicity; see Exercise 2.17.
A somewhat more subtle recursive argument, stressing the role of parity of n

in some features of Hanoi graphs, leads to perfect codes on Hn
3 . Figure 2.14 shows

the iterative construction of two families (An)n∈N and (Cn)n∈N of subsets of the
vertex sets T n of Hn

3 as they appear in the standard drawings of these graphs.

A0

C0

A1+n

C1+n

{
{

An

Cn Cn

n odd

n even

An

An An

n odd

n even

Cn

An An

Cn

Cn Cn

Figure 2.14: Iterative construction of sets An and Cn

The seeds are A0 = ∅ and C0 = T 0. In 0Hn
3 , we include all those vertices into

A1+n and C1+n which are in the corresponding positions of the elements of An and



98 Chapter 2. The Classical Tower of Hanoi

Cn, respectively, in Hn
3 . For 1Hn

3 and 2Hn
3 we have to take parity of n into account.

For even n we add to C1+n those vertices 1s, 2s for which s ∈ An; the additional
elements of A1+n are obtained from those in corresponding positions in Hn

3 , but
with the latter rotated by 120○ counter-clockwise for 1Hn

3 and clockwise for 2Hn
3 .

Similarly, for odd n, C1+n will receive the corresponding elements contained in the
positions of Cn in the copies of Hn

3 rotated as before, and A1+n those of the not
rotated one. The reason for the necessity of the auxiliary sequence of sets a is that
all perfect states have to be codewords for even n, so that we cannot link three of
these together because then codewords would be neighbors. The set An does not
cover perfect states, whereas Cn is a perfect code on Hn

3 . See Figure 2.15 for the
first few cases.

A

C

Figure 2.15: The vertices in An and Cn (represented by filled dots) in Hn
3 for

n = 0,1,2,3

Because of the imposing character of the construction, the perfect codes are
unique for even n and there are precisely three of them for odd n, depending
on which perfect state is a codeword and therefore obtained from each other by
rotations of 120○.

The existence and uniqueness of perfect codes in Hanoi graphs Hn
3 were first

proved by Cull and I. Nelson in [65]. C.-K. Li and Nelson [193] followed with a
short proof for the existence of these perfect codes. They also considered the more
general problem of perfect k-codes for k ≥ 2 and proved that no such codes exist in
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Hn
3 except the trivial ones, namely the codes with one vertex (3 ⋅2n−2 ≤ k ≤ 2n−1)

and the code containing the three perfect states (k = 2n−1 − 1).
A set D of vertices of a graph G is called dominating if every vertex w ∈

V (G) ∖D is adjacent to some vertex v ∈ D. The domination number of a graph
G, denoted by γ(G), is the order of a smallest dominating set of G. It is well-
known (see [133, Theorem 4.2]) that if a graph G has a perfect code C, then
∣C ∣ = γ(G). A perfect code of Hn

3 contains 1

4
(3n + 2 + (−1)n) codewords [296,

A122983]; see Exercise 2.18. Therefore:

γ(Hn
3 ) = 1

4
(3n + 2 + (−1)n) .

Apart from the rotations there are three additional obvious symmetries of
Hanoi graphs given by reflections at axes through perfect states and perpendicular
to the opposite side. These symmetries of the drawing of the graph correspond to
permutations of the peg labels. To show that there are no additional symmetries
hidden, we look at the automorphism group Aut(Hn

3 ) of a Hanoi graph, i.e. the
set of isomorphisms from Hn

3 to Hn
3 together with the canonical operation of

composition, and show that it is isomorphic to the permutation group on T , which
we will denote by Sym(T ) (≅ Sym3). Note that this is the smallest non-abelian
group, in turn isomorphic to the dihedral group of order 6 (cf. [263, p. 327]).

Theorem 2.23. For any n ∈ N, Aut(Hn
3 ) ≅ Sym(T ).

Proof. The six automorphisms of Hn
3 described above, namely

gσ ∶ T n → T n, s ↦ σ(sn) . . . σ(s1)
for σ ∈ Sym(T ), form a subgroup of Aut(Hn

3 ) isomorphic to Sym(T ). Hence it
remains to prove that they comprise already the complete automorphism group.

Let g ∈ Aut(Hn
3 ). Since g preserves degrees, we necessarily have g(kn) =

σ(k)n for some σ ∈ Sym(T ) and all k ∈ T . But then g = gσ by Lemma 2.8, because
automorphisms preserve distances. ◻

A perfect state can thus be mapped to any other perfect state by some
automorphism of Hn

3 . On the other hand, a perfect state can not be mapped to
a non-perfect one by an automorphism. This means that the three perfect states
form an orbit under the action gσ.s = σ(sn) . . . σ(s1) of Aut(Hn

3 ) on V (Hn
3 ) = T n;

cf. Section 0.5.2. Any other orbit contains six states. These facts, rather obvious
from the graphs, follow formally from the Orbit-Stabilizer Theorem 0.8, because
perfect states are invariant under two of the six symmetries, namely the identity
and the reflection on the line through that vertex, whereas every other vertex is
only fixed by the identity. For the number of orbits, i.e. the size of the factor
set [T n] of T n with respect to the automorphism group Aut(Hn

3 ), we thus have
3 + 6 (∣[T n]∣ − 1) = 3n, such that there is a total of

∣[T n]∣ = 1

2
(3n−1 + 1) (2.11)
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orbits under the action of Aut(Hn
3 ) on T n, n ∈ N. (This is sequence A007051 in

[296].) In other words, there exist that many essentially different states of the TH
with n discs. Compared with the number of symmetry classes of Rubik’s cube,
namely 901083404981813616 (cf. [160, Section 8.7]), this means that a TH with
40 or more discs has more configurations than the famous Hungarian puzzle.

The identity (2.11) is, of course, also a consequence of Corollary 0.9, because,
apart from the trivial fixed point set (T n)id containing 3n elements, only three
other automorphisms, namely those corresponding to reflections, have fixed points,
one each. Therefore, the sum in Burnside’s lemma is 3(3n−1 + 1), which then has
to be divided by the number of automorphisms.

A slightly more involved application of factor sets is obtained if we let
Aut(Hn

3 ) act on X = T n×̇T n, where A×̇A ∶= {(a, b) ∈ A × A ∣ a ≠ b}; X is the
set of non-trivial tasks (s, t) to get from a given state s to another one t. We
will come to the metric aspects of this problem in the next section, but want to
point out here that these tasks also come in sets of six equivalent copies, differ-
ing only by the labelling of the pegs. Psychologists, who use the TH in test tools
(cf. [151]), do not regard (s, s) to be a task; therefore, for better comparison, we
only consider the 3n(3n − 1) non-trivial tasks as well. The group action is now
given by gσ.(s, t) = (σ(sn) . . . σ(s1), σ(tn) . . . σ(t1)), and the only automorphism
having fixed points is the identity. Therefore, from Corollary 0.9, the number of
equisets is (cf. [296, A016142])

∣[X]∣ = 1

2
3n−1(3n − 1) .

Moreover, since {id} is the stabilizer for every (s, t) ∈ X , we deduce from Theo-
rem 0.8 that every equiset [(s, t)] contains exactly 6 equivalent tasks which psy-
chologists called iso-problems; cf. [148, p. 20].

At this point we should mention again that mathematical and psychological
equivalence are not equivalent! A human problem solver might not realize the
mathematical equivalence of two tasks where just two pegs have been switched
because of the position of these pegs: one of them might be closer to the test
person or they come in a version with the pegs in a row, making the middle one
special. More seriously, the set of tasks X has another symmetry, namely tasks
(s, t) and (t, s) are mathematically equivalent. They are not, in general, from the
psychological point of view: it seems to be much harder to get from a perfect to a
regular state than vice versa. It might be contrary to our everyday experience that
disorder can be achieved much more easily, but here it is a prescribed, deterministic
disorder! We therefore did not include reversion of tasks into the symmetry group
acting on the set of tasks. We will come back to symmetry considerations in
connection with the other so-called tower tasks.



2.3. Hanoi Graphs 101

Spanning Trees

In the 19th century, G. R. Kirchhoff considered the flow of electricity in a net-
work of wires which can be modelled as circuits in a corresponding graph; cf. [37,
Chapter 8]. In the hands of mathematicians (cf. [326, p. 7–11]), this study of the
complexity of a network turned into the question for the number of spanning trees
of a connected graph G, i.e. spanning subgraphs of G which are trees; this number
is denoted by τ(G) and called, following W. T. Tutte, the complexity of G. Culmi-
nating point of this development is the Matrix-Tree theorem [327, Theorem VI.29],
which states that τ(G) can be calculated from the so-called Kirchhoff matrix K(G)
in a rather simple way: K(G) is obtained by subtracting the adjacency matrix of
G from the diagonal matrix whose non-trivial entries are the degrees of the respec-
tive vertices; choose a vertex from G and delete the corresponding row and column
from K(G), then τ(G) is equal to the determinant of the remaining matrix. As
an example,

K(H1

3) =
⎛⎜⎝

2 −1 −1
−1 2 −1
−1 −1 2

⎞⎟⎠ ,

and

τ(H1

3 ) = ∣ 2 −1
−1 2

∣ = 3 .
The number of vertices of Hn

3 growing like 3n, it seems not to be feasible, how-
ever, to apply the Matrix-Tree theorem for general n. Nevertheless, the following
impressive result was proved quite recently.

Theorem 2.24. For every n ∈ N0, the complexity of Hn
3 is given by

τ(Hn
3 ) = 3 1

4
(3n−1)+ 1

2
n ⋅ 5 1

4
(3n−1)− 1

2
n

= ⎛⎝
√

3

5

⎞
⎠
n

⋅ ( 4
√
15)3

n−1
.

The first proof is due to E. Teufl and S. Wagner [324, p. 892], who made use of
a resistance scaling factor on what they call a self-similar lattice, i.e. exploiting the
recursive structure of Hn

3 . (The authors also determined the asymptotic behavior
of the number of matchings of Hn

3 , namely 0.6971213284 ⋅1.779734688253n in [323,
Example 6.3].) An entirely combinatorial proof was given by Z. Zhang, S. Wu,
and F. Comellas in [351] following the model of S.-C. Chang, L.-C. Chen, and W.-
S. Yang [53] who did the same kind of calculation for the approximating lattices of
the Sierpiński triangle; cf. also [68, Section 3.2]. Because of its intrinsic challenges,
we will sketch this argument, thereby essentially following J. Brendel [43].

Proof of Theorem 2.24. We will first try to establish a recurrence for un ∶= τ(Hn
3 ).

A spanning tree U of H1+n
3 decomposes into three spanning forests Ui of iHn

3 ,
respectively, together with a subset E of the connecting edges ek = {ikn, jkn},
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{i, j, k} = T . So we have ∣U ∣ − 1 = ∥U∥ = ∥U0∥ + ∥U1∥ + ∥U2∥ + ∣E∣ = ∣U0∣ − c0 +∣U1∣ − c1 + ∣U2∣ − c2 + ∣E∣, where ci ∈ N is the number of components of Ui; hence
3 ≥ ∣E∣ = c0 + c1 + c2 − 1 ≥ 2. If ∣E∣ = 2, all Uis are trees, such that we get 3u3

n

spanning trees, depending on which of the three connecting edges are missing in
E; cf. the upper row in Figure 2.16.

11n 10n 20n 22n

12n

02n

00n

01n

21n
e1e2

e0

Figure 2.16: Composition of spanning trees of H1+n
3 (large triangles) from spanning

forests of Hn
3 (small triangles) with the number of respective components of the

latter given by the number of dashed lines; filled dots are perfect states, unfilled
ones are connecting vertices

If, however, all connecting edges are used, one of the subgraphs, say U0,
has to have two components, while the other two are trees. Since U has to be
connected, each of the two components of U0 has to contain at least one of the
connecting vertices 0kn, k ≠ 0. If we call bn the number of spanning forests of Hn

3

with two components, each of which containing at least one perfect state, we have
to exclude those where 0n is isolated (cf. the lower row in Figure 2.16) and will
get 3 ⋅ 2

3
bnu

2
n spanning trees of H1+n

3 which are distinct from the ones constructed
earlier. It is also clear that the counting is complete. We therefore arrive at

u1+n = 3u3

n + 2bnu2

n . (2.12)

Unfortunately, we were not able to produce a recurrence for un directly, but
had to introduce the counting of specific two-component spanning forests as well,
such that we will now have to find a recurrence for the sequence (bn)n∈N0

too.
With B such a subgraph of H1+n

3 decomposed as before into Bi and E, we get
3 ≥ ∣E∣ = c0+c1+c2−2 ≥ 1 and have to distinguish three cases for the size of E. This
can be analyzed case by case as before; we omit the details. However, if ∣E∣ = 3, we
are facing the possibility that, say, c0 = 3, c1 = 1 = c2, i.e. B0 is a spanning forest of
0Hn

3 with three components, each of them containing a vertex 0kn; cf. the center
picture in Figure 2.17.
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Figure 2.17: Composition of two-component spanning forests of H1+n
3 from two

spanning trees and one three-component spanning forest of Hn
3 ; cf. the caption of

Figure 2.16

Denoting the number of spanning forests of Hn
3 with three components each

containing a perfect state by tn, we clearly get an extra additive term 3tnu
2
n for

b1+n. All in all we obtain

b1+n = 3u3

n + 7bnu2

n + 7

3
b2nun + 3tnu2

n . (2.13)

Fortunately, this is the end of the chain, because spanning forests with more
than three components must have a component without a perfect state (pigeon
hole principle!). A final analysis for the sequence (tn)n∈N0

, the details of which we
omit again, yields

t1+n = u3

n + 4bnu2

n + 4b2nun + 14

27
b3n + 3tnu2

n + 4tnbnun . (2.14)

We are left with the formidable task to solve the non-linear recurrence consist-
ing of Equations (2.12), (2.13) and (2.14), with the obvious seeds u0 = 1, b0 = 0 = t0.
There seems to be no general method, so one has to do some handicraft! First of
all one realizes that bn is linear in (2.12) and since un ≠ 0 (every connected graph
has a spanning tree: take the minimal (with respect to size) spanning subgraph),
we can solve for bn and insert this into the other two equations. Now the same is
true for tn in (2.13), such that from (2.14) we get a recurrence of order 3 for un

(cf. [43, p. 19]):

u3+n = u2
2+n(36u2+nu

4
1+nu

3
n + 21u2

2+nu
6
n − 35u8

1+n)
18u3

1+nu
6
n

. (2.15)

This does not look more promising, even though it is easy to calculate the first few
terms of the sequence: u0 = 1, u1 = 3, u2 = 135, u3 = 20503125. But a good idea is
to factor these values, and observing that u0 = 30 ⋅50, u1 = 31 ⋅50, u2 = 33 ⋅51, u3 =
38 ⋅ 55, we are led to the “educated guess” that un = 3αn ⋅ 5αn−n. Plugging this into
(2.15), we get the following linear third-order recurrence for α:

αn+3 = 5αn+2 − 7αn+1 + 3αn

with the seeds
α0 = 0, α1 = 1, α2 = 3 ,
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and as a check α3 = 8. Although this homogeneous recurrence with constant coef-
ficients is a little harder than the ones we met before, it can be solved by standard
methods (cf. [96, Theorem 7.2]): the characteristic polynomial is x3 − 5x2 + 7x − 3
and has the double root 1 and the simple root 3, such that αn = a + bn + c3n,
and the seeds can be employed to specify the parameters a, b and c to obtain
αn = 1

4
(3n − 1) + 1

2
n.

It should be emphasized that this is not the end of the proof, but that we
have to check that un = 3αn ⋅ 5αn−n really solves (2.15), because our ansatz could
have been wrong!

Although we do not need them anymore, we give the solutions for bn and tn
for the readers interested in difficult recurrences:

bn = 3

2
((5

3
)
n

− 1)un, tn = 3

4
((5

3
)
n

− 1)
2

un . ◻
To readers not yet exhausted from such arguments we recommend Exer-

cise 2.19.

Despite rapidly increasing sequences like the above τ(Hn
3 ), we finally notice

that in connection with the Olive sequence

o = 1,2,0,1,2,0,1,2,0,1,2,0,1,2,0, . . . ,
it is worthwhile to introduce a limit graph in the following way. To any state
s ∈Hn

3 we add infinitely many zeros to the left and put:

V (H∞3 ) = ⋃
n∈N0

{0∞s ∣ s ∈ T n} .

For any s̄, t̄ ∈ V (H∞3 ), there is an n ∈ N0, such that s̄ = 0∞s and t̄ = 0∞t, where
s, t ∈ Hn

3 ; then s̄ and t̄ are adjacent in H∞3 if and only if s and t are adjacent
in Hn

3 . Because of the recursive definition of Hn
3 this does not depend on the

n chosen. Note that the graph H∞3 , called Sisyphean Hanoi graph, is connected,
see Exercise 2.20, and represents all regular states of the Tower of Hanoi with
pegs unlimited in height and an infinite supply of discs reachable from the state
where all discs start on peg 0. That is to say that no matter how many discs have
been transferred to another peg after finitely many moves, there will always be
(infinitely many) discs left on peg 0. Among the infinite paths in this graph we
rediscover the Olive sequence as can be descried in Figure 2.18.

This representation of Olive’s sequence on H∞3 reveals yet another connection
to special (square-free) sequences. We observe again (cf. Proposition 2.16) that the
numbers of states at fixed distances µ ∈ N0 from a perfect state are always powers
of two; see the second numerical column in Figure 2.19. This also easily follows
from the fact that this number is doubled whenever we go from µ − 2i to µ for
2i ≤ µ < 2i+1, i ∈ N0. We recall from Proposition 2.16 that the exponents of these
powers are q(µ), the number of 1s in the binary representation of µ; cf. the third
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Figure 2.18: Olive’s sequence in the Sisyphean Hanoi graph

numerical column in Figure 2.19. In the fourth column we list the parity of these
numbers, that is the sequence t given by tn = q(n)mod 2, which we recall from
Section 2.1 as the Prouhet-Thue-Morse sequence, leading to the square-free Thue
sequence.

2.4 Regular to Regular

Given the connectedness of the graphs Hn
3 and the corresponding distance function

d, it is natural to impose a new problem type P2, namely tasks to get from an
arbitrary regular initial state s to an arbitrary regular goal state t or, in other
words, to find (shortest) paths between any two vertices of Hn

3 and their distance
d(s, t). It turns out that the worst case is still the classical perfect-to-perfect task:

Theorem 2.25. ∀n ∈ N0 ∶ diam (Hn
3 ) = 2n − 1.

Proof. By Theorem 2.1 we only have to prove diam (H1+n
3
) ≤ 2n+1−1 for all n ∈ N0.

Let s, t ∈ T n. Then, for i ≠ k ≠ j,
d(is, jt) ≤ d(is, ikn)+1+d(jkn, jt) = d(s, kn)+1+d(kn, t) ≤ 2n−1+1+2n−1 = 2n+1−1,
by Theorem 2.7. ◻

2.3. Hanoi Graphs
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Figure 2.19: Prouhet-Thue-Morse sequence in H4
3

The path implicit in the preceding proof is far from being of minimal length
in general. For instance, if i = j, then d(is, jt) = d(s, t) ≤ 2n − 1 < 2n+1 − 1. This is
a direct consequence of the boxer rule:

Lemma 2.26 (They never come back). If on a geodesic of H1+n
3 , n ∈ N0, the largest

disc is moved away from a peg, it will not return to the same peg.

Proof. If on a path in H1+n
3 disc n + 1 moves away from and back to some peg,

one may leave out these two moves and all moves of disc n+1 in between, because
the moves of the smaller discs are not effected by the largest disc. This will result
in a strictly shorter path between the end vertices such that the original path can
not be a geodesic. ◻

For what follows, let us define two notations given a vertex is ∈ T 1+n of H1+n
3

and with {i, j, k} = T , namely

d(s; j, k) ∶= d(s, jn) − d(s, kn) . (2.16)

and d(is) ∶= ∣d(s; j, k)∣ ∈ [2n]0 ; the latter is well defined since ∣d(s;k, j)∣ =
∣d(s; j, k)∣. The meaning of these notions can be sensed from Figure 2.20.

We can now derive the following analogue of the result we got for the CR
(cf. p. 59).
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Figure 2.20: The meaning of d(s; j, k)

Proposition 2.27. Let s ∈ T n, n ∈ N0, and {i, j, k} = T . Then

ε(is) =max{d(is, j1+n),d(is, k1+n)} = 2n+1 − 1 − 1

2
(d(s, in) − d(is)) .

Proof. We may assume that ε(is) = d(is, jt) for some t ∈ T n, because from Theo-
rem 2.25 and by virtue of (2.8) we know that d(is, it) < 2n ≤ d(is, j1+n). Then

ε(is) ≤ d(is, ikn) + 1 + d(jkn, jt) ≤ d(is, ikn) + 2n = d(is, j1+n) .
We now apply the very useful formula

max{a, b} = 1

2
(a + b + ∣a − b∣) ,

which can easily be checked for a, b ∈ R, to get

ε(is) = 1

2
(d(is, j1+n) + d(is, k1+n) + ∣d(is, j1+n) − d(is, k1+n)∣) .

Now, by Proposition 2.13,

d(is, j1+n) + d(is, k1+n) = 2(2n+1 − 1) − d(is, i1+n) = 2(2n+1 − 1) − d(s, in) .
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Moreover,

d(is, j1+n) − d(is, k1+n) = d(is, ikn) + 1 + d(jkn, j1+n)
− (d(is, ijn) + 1 + d(kjn, k1+n))
= d(s, kn) + d(kn, jn) − d(s, jn) − d(jn, kn) = d(s;k, j) .

◻
The range of eccentricities in H1+n

3 , n ∈ N, is from 3 ⋅ 2n−1 to 2n+1 − 1 (see
Exercise 2.21), and we can now approach the goal to determine the average ec-
centricity of H1+n

3 . Adding eccentricities we get from Proposition 2.27 for a fixed
i ∈ T :

∑
s∈Tn

ε(is) = 3n(2n+1 − 1) + 1

2
∑

s∈Tn

∣d(s;k, j)∣ − 1

2
∑

s∈Tn

d(s, in) . (2.17)

We know from Proposition 2.13 that the last term is equal to 3n−1(2n − 1). To
obtain the value of the penultimate term, we note that −2n < d(s;k, j) < 2n, and a
good idea would be to count, for each value µ in this range, the number of vertices
s such that d(s;k, j) = µ. So let us define

∀n ∈ N0 ∀µ ∈ Z ∶ zn(µ) = ∣{s ∈ T n ∣ d(s;k, j) = µ}∣ ; (2.18)

this is independent of k and j as long as they are different.
The sequence of functions zn on Z (cf. [141, Definition 10]) is extremely

interesting and useful. In relation to Hanoi graphs, each zn(µ) counts the vertices
on a vertical line superposed to the standard drawing of Hn

3 ; see Figure 2.21 for
the case n = 4 with k = 1, j = 2. It is also the number of ways µ can be written as
a binary expansion, but with coefficients from the set T̃ ∶= {−1,0,1}:

zn(µ) = ∣{s̃ ∈ T̃ n ∣ µ = n

∑
d=1

s̃d ⋅ 2d−1}∣ . (2.19)

This follows from (2.8) as soon as one can convince oneself that the mapping from
T n to T̃ n, s ↦ s̃, where s̃d = (sd ≠ (s ◁

0)d)−(sd ≠ (s ◁
2)d) for d ∈ [n], is bijective.

Since ∣T n∣ = 3n = ∣T̃ n∣ and by the pigeonhole principle, it suffices to show that the
mapping is injective, i.e. that s can be uniquely recovered from s̃, which is possible
because sd = (s ◁ (s̃d + 1))d, and this can be solved for s.

From (2.19) one obtains the following recurrence:

∀µ ∈ Z ∶ z0(µ) = (µ = 0) ,
∀n ∈ N0 ∀µ ∈ Z ∶ zn+1(µ) = zn(µ − 2n) + zn(µ) + zn(µ + 2n) ; (2.20)

this three-term sum arises from the three values 1, 0, and −1 which s̃n+1 can adopt.
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Figure 2.21: Values for z4(µ) as the numbers of vertices on the vertical lines at
distance µ from the center, representing the difference in distances from the bottom
corners

The values of zn(µ) can be arranged in an array as in Figure 2.22, where the
rows correspond to n, starting with n = 0, and the columns to µ, with µ = 0 in the
center.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 1 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 2 1 3 2 3 1 3 2 3 1 2 1 1 0 0 0 0 0 0 0 0 0
0 1 1 2 1 3 2 3 1 4 3 5 2 5 3 4 1 4 3 5 2 5 3 4 1 3 2 3 1 2 1 1 0

Figure 2.22: The zn(µ) array for n ∈ [5]0 and ∣µ∣ ∈ [17]0

Restricting ourselves to non-negative arguments, we recognize a Stern array
(cf. p. 17), namely ((1,0)n)n∈N0

for the atoms 1 and 0, as in Figure 2.23.
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Figure 2.23: Stern’s diatomic array for (1,0) and n ∈ [5]0

This shows that

∀µ ∈ [2n + 1]0 ∶ zn(µ) = (1,0)n(µ) = (0,1)∞(2n − µ) , (2.21)

and

∀µ ∈ [2n−1 + 1]0 ∶ zn(µ) = (1,1)n−1(µ) = (1,1)n−1(2n−1 − µ) . (2.22)

The identity (2.22) has two immediate consequences. The Brocot sequence

can be written as (cf. p. 19) βn(µ) = zn(2n − µ)
zn+1(2n − µ) on [2n + 1]0, and we have the

following identity (cf. [253, Theorem 7]):

∀n ∈ N ∶ ∣{µ ∈ [2n−1] ∣ zn(µ) = n}∣ = ϕ(n)
with Euler’s phi function (cf. p. 19).

By induction on n we get from (2.20):

zn(0) = 1 = zn(2n − 1), zn(−µ) = zn(µ), zn(µ) = 0⇔ ∣µ∣ ≥ 2n . (2.23)

The most exciting special values of zn(µ) can be found when µ runs through
the Jacobsthal sequence (for E. Jacobsthal), which we encountered briefly in Chap-
ter 1 (cf. p. 56). This sequence is explicitly given by Jk = 1

3
(2k − (−1)k) and fulfills

the two recurrence relations

∀k ∈ N0 ∶ 2k − Jk = Jk+1 = 2Jk + (−1)k , (2.24)

with the seed J0 = 0. We now get

Theorem 2.28. For every n ∈ N0:

F1+n = zn(Jn) = max{zn(µ) ∣ µ ∈ Z} ,
L1+n = z2+n(Jn) .
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Proof. We first show that fn ∶=max{zn(µ) ∣ µ ∈ Z} fulfils the Fibonacci recurrence
relation in (0.4); the seeds are obviously f0 = 1 = f1. We proceed by induction. For
n = 0 we get f2 = f1 + f0 by inspection. It is clear that fn+3 ≤ fn+2 + fn+1, because
one of two neighbors in the sequence zn+2 appears already in zn+1. Moreover, by
induction assumption fn+2 = fn+1+fn such that, from intercalation, fn+2 and fn+1
are neighbors in zn+2, whence fn+3 ≥ fn+2 + fn+1.

We now put gn ∶= zn(Jn) and show again that the Fibonacci recurrence holds
with g0 = 1 = g1 as before:

gn+2 = zn+2(Jn+2) = zn+2(2n+1 − Jn+1)
= zn+1(Jn+1) + zn+1(2n + Jn)
= zn+1(Jn+1) + zn(Jn)
= gn+1 + gn .

Similarly, one shows, this time based on the second recurrence relation
for the Jacobsthal numbers in (2.24), that the sequence with the general term
(1,2)n(Jn) fulfils the Fibonacci recurrence with seeds 1 and 3, such that this
sequence represents the Lucas numbers L1+n. Finally, we have to note that
(1,2)n(µ) = zn+2(µ). ◻

In the sequel we will need some further properties of the sequences zn(µ)
(cf. [141, Lemma 2ii]).

Lemma 2.29. For all n ∈ N0:

∑
µ∈Z

zn(µ) = 3n, ∑
µ∈N

zn(µ) = 1

2
(3n − 1), ∑

µ∈N

µzn(µ) = 1

5
(6n − 1) .

The proof will be done in Exercise 2.22.
From (2.23) and Lemma 2.29 we see immediately that

1

2
∑

s∈Tn

∣d(s;k, j)∣ = 2
n−1

∑
µ=1

µzn(µ) = 1

5
(6n − 1) .

Putting everything into (2.17), we arrive at

∑
s∈Tn

ε(is) = 3n(2n+1 − 1) + 1

5
(6n − 1) − 3n−1(2n − 1) ,

whence
E(H1+n

3 ) = 14

15
6n+1 − 2

3
3n+1 − 3

5
.

This leads to (cf. [154, Proposition 4.4]):

Theorem 2.30. For n ∈ N0, the average eccentricity of H1+n
3 is

ε(H1+n
3 ) = 14

15
2n+1 − 2

3
− 3

5
3−(n+1) . (2.25)
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Figure 2.25: Shortest path needs two LDMs
in H3

3

An immediate consequence is that asymptotically the average eccentricity
is 14

15
of the diameter. This has some practical significance for psychological tests

based on TH, because it means that a randomly chosen starting configuration
will normally lead to sufficiently challenging tasks. We will say more about the
normalized average eccentricity ε/diam of other graphs in Section 5.6.1.

Another important consequence of the boxer rule is (cf. [300, p. 62f] and [141,
Lemma 1ii]):

Corollary 2.31. On a geodesic of Hn
3 , the largest disc moves at most twice.

Proof. By Lemma 2.26 (and induction), m ∈ N0 moves of the largest disc involve
m+1 pegs. By the pigeonhole principle, m must be smaller than 3, the number of
pegs available. ◻

A long standing myth was that the largest disc will not move more than once
on a geodesic—after all, its moves are the most restricted and therefore costly ones.
This assumption led (via induction) to the belief that the shortest path between
two given states is unique (cf., e.g., [346, Theorem 3]). The most easy example in
Figure 2.24 shows that this is false: to interchange two discs on different pegs in
an optimal 3-move path, one can move the larger disc just once or either twice.

But the situation is even worse: Figure 2.25 shows that two moves of the
largest disc (largest disc moves, LDMs) are necessary on a shortest path between
two states like in this example the transposition of the largest disc 3 and the 2-
tower consisting of discs 1 and 2. Here the shortest path with one LDM has length
7 (dashed arrow), whereas the optimal path using 2 LDMs needs only 5 moves
(solid arrow).

On the other hand, nothing else could go wrong (cf. [141, Theorem 4]):
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Theorem 2.32. Let s, t ∈ T n. Then there are at most two shortest s, t-paths. If there
are two, they differ by the number (one or two) of moves of the largest disc d ∈ [n]
for which sd ≠ td.
Proof. We may clearly assume that s ≠ t. Then there exists the largest disc d for
which sd ≠ td. By Lemma 2.26, discs d+ 1, . . . , n do not move on an optimal path.
In addition, Corollary 2.31 implies that disc d

- either moves only once: from peg sd to peg td,

- or it moves first from peg sd to peg 3−sd − td, and then from 3−sd − td to td.

In both cases, the moves of discs 1, . . . , d − 1 are unique by the uniqueness of the
optimal solutions for P1 tasks (Theorem 2.7). ◻

Theorem 2.32 and its proof immediately lead to Algorithm 11 which solves
a P2 task s → t. Recall that the call p1(n, s, j) of Algorithm 10 returns the disc δ

active and the peg i passive in the best first move to get from an n-disc state s to
the perfect state on peg j, as well as the overall distance µ = d(s, jn).

By the above, it is not necessary to give a formal correctness proof for Algo-
rithm 11 which returns the length µ of an optimal solution. In addition, it specifies
the case C the task leads to, namely if C = 1, then the largest moving disc moves
once only, if C = 2, then it moves twice, and if C = 3, we have a draw, i.e. both
alternatives lead to a shortest path. The disc active in the best first move is δC
and the idle peg is iC in the first two cases; if C = 3, then we may either move
disc δ1 avoiding peg i1 or use disc δ2 with idle peg i2.

Although Algorithm 11 can easily be implemented on a computer and there-
fore be used in a test tool, it has two serious drawbacks. First of all, it is not human
in the sense that it needs too much memory to be employed by a human problem
solver faced with a P2-type task; we will come back to this in Section 6.2 when deal-
ing with the so-called Twin-Tower problem, a proto-type of which had been posed
already by Lucas in [210, Deuxième problème], namely the task (01)4 → (10)4 in
H8

3 (cf. Section 6.1), thus being the earliest concrete example for P2. Secondly, the
four-fold call of procedure p1 and the comparison of the two alternative solutions
is not particularly elegant. The challenge to devise a more efficient solution to this
so-called P2 decision problem was pronounced in [143, p. 179] and successfully
taken up by D. Romik in [272]. Before we describe his approach, based again on
employing an appropriate automaton, in Section 2.4.3, we will show how statistical
results can be obtained without solving the decision problem for every single task.

2.4.1 The Average Distance on Hn
3

Let us consider a P2-type task is → jt in H1+n
3 with s, t ∈ T n, i, j ∈ T , i ≠ j. By

Theorem 2.32, there are exactly two candidates for an optimal solution, namely,
with k = 3− i−j, the paths is→ ikn → jkn → jt and is→ ijn → kjn → kin → jin →
jt of lengths

d1(is, jt) ∶= d(s, kn) + 1 + d(t, kn)
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Algorithm 11 Best first move to a regular state
Procedure p2(n, s, t)
Parameter n: number of discs {n ∈ N}
Parameter s: regular initial state {s ∈ T n}
Parameter t: regular goal state {t ∈ T n}

µ← 0 {length of path}
N ← n {largest disc to be moved}
while sN = tN
N ← N − 1

end while
if N = 0 then

STOP
end if
C ← 1 {case of P2 decision}
s← s ↾ [N − 1], t ← t ↾ [N − 1]
p1(N − 1, s,3 − sN − tN)
µ1 ← µ, δ1 ← δ, i1 ← i {µ, δ, i: output of p1}

p1(N − 1, t,3 − sN − tN)
µ1 ← µ1 + 1 + µ {length of one-move path}

p1(N − 1, s, tN)
µ2 ← µ, δ2 ← δ, i2 ← i

p1(N − 1, t, sN)
µ2 ← µ2 + 2N−1 + 1 + µ {length of two-move path}

µ← µ1

if µ1 ≥ µ2 then
C ← C + 1, µ ← µ2

end if
if µ1 = µ2 then
C ← C + 1

end if

and
d2(is, jt) ∶= d(s, jn) + 1 + 2n + d(t, in) ,

respectively. In order to compare these two values, we notice that

d1(is, jt) ◻ d2(is, jt) ⇔ d(s;k, j) + d(t;k, i) ◻ 2n, (2.26)

where ◻ ∈ {<,=,>}.
Let us ask how many vertices there are in T 1+n which can be reached from

a fixed vertex is on two different optimal paths; we call the set of these vertices
X(is). From (2.26) it is clear that jt ∈X(is) if and only if d(s;k, j)+d(t;k, i) = 2n;
in particular, both summands must be strictly positive. This means that

kT n⋂X(is) = ∅ , jT n⋂X(is) = {jt ∣ d(jt) = 2n − d(is)} .
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The latter set is empty if and only if s = in. Since shortest paths to and from
perfect states are always unique by Theorem 2.7, we arrive at a converse of that
theorem, namely that perfect states are the only ones which are linked to each
other state by a unique optimal path using at most one move of the largest disc
(cf. [149, Corollary 3.7]).

Proposition 2.33. For every is ∈ T 1+n∖{01+n,11+n,21+n}, n ∈ N, there is a jt ∈ T 1+n

such that there are two shortest paths between these vertices in H1+n
3 .

The number of these special goal vertices can be expressed rather elegantly:

∣{jt ∣ d(jt) = 2n − d(is)}∣ = zn (2n − d(is)) .
As can easily be seen by induction from (2.20), the value of zn(2n − ν) is actually
independent of n; therefore we will call it b(ν). We then get

Proposition 2.34. For is ∈ T 1+n, n ∈ N0,

∣X(is) ∖ iT n∣ = b (d(is)) .
Putting µ = 2n+1 − ν in (2.20), we get

∀n ∈ N0 ∀ν ∈ [2n+1] ∖ [2n] ∶ b(ν) = b(2n+1 − ν) + b(ν − 2n) . (2.27)

Together with the two seeds (or “atoms”) b(0) = 0 and b(1) = 1, (2.27) constitutes
a recurrence for what we recognize, by the identity in (2.21), as Stern’s diatomic
sequence: b(ν) = (0,1)∞(ν). This integer sequence, A002487 in [296], turns up in
many mathematical disguises. It is most commonly defined using the recurrence
relation

∀ν ∈ N ∶ b(2ν) = b(ν), b(2ν + 1) = b(ν) + b(ν + 1) . (2.28)

The equivalence of (2.27) and (2.28) for the chosen seeds is proved in Exercise 2.23.

But there can be even more elements of X(is), namely those in iT n. By
Lemma 2.26, the two shortest paths must then lie entirely in iHn

3 , such that we
may apply the above argument to sns

(n−1), with s(n−1) ∶= sn−1 . . . s1. The condition
with {sn, jn, k} = T is now that d(s(n−1);k, jn) + d(t;k, sn) = 2n−1, and jn has to
be chosen such that the first summand is positive. This leads to new elements in
X(is) of the form ijnt with t ∈ T n−1 fulfilling d(jnt) = 2n−1−d(sns(n−1)). We may
continue this procedure in Tm for further decreasing m ∈ [n], where we put s(m) ∶=
sm . . . s1, j1+m ∈ T ∖{s1+m} is chosen such that d(s(m); s1+m ◁

j1+m, j1+m) > 0, and
we define s(n−m) ∶= s1+n . . . s2+m with the understanding that s1+n ∶= i. Then we
arrive at

Theorem 2.35. For is ∈ T 1+n, n ∈ N0, the set of vertices in H1+n
3 to which two

optimal paths lead is

X(is) = n

⋃
m=1

{s(n−m)j1+mt ∣ t ∈ Tm, d(j1+mt) = 2m − d(s1+ms(m))} .
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For each m ∈ [n] we have

∣{s(n−m)j1+mt ∣ t ∈ Tm, d(j1+mt) = 2m − d(s1+ms(m))}∣ = zm(2m − d(s1+ms(m))) .
Hence we get

Corollary 2.36. For is ∈ T 1+n, n ∈ N0,

∣X(is)∣ = n

∑
m=1

b (d(s1+ms(m))) .

In a similar manner, just making use of ◻ => in (2.26), we can count those
vertices jt of H1+n

3 which are linked to is by a unique shortest path, but where a
second move of the largest disc not initially in goal position is necessary. Calling

this set Y (is) and defining B(N) = N−1

∑
ν=0

b(ν) for N ∈ N0, we obtain

Theorem 2.37. Let is ∈ T 1+n, n ∈ N0. Then

∣Y (is) ∖ iT n∣ = B (d(is))
and

∣Y (is)∣ = n

∑
m=1

B (d(s1+ms(m))) .

We now turn to the question how many of all tasks is → jt, i ≠ j, have
two optimal solutions. We refer back to (2.26) in the case where ◻ is equality. By
symmetry it is clear that their number is equal to

6 ∣{(s, t) ∈ (T n)2 ∣ d(s; 1,2) + d(t; 1,0) = 2n}∣ =∶ 6xn .

Since d(0s) = ∣d(s; 1,2)∣ < 2n,

xn =
2
n−1

∑
µ=1

∣{(s, t) ∈ (T n)2 ∣ d(s; 1,2) = µ, d(t; 1,0) = 2n − µ}∣ = ∑
µ∈N

zn(µ)zn(2n − µ) .

Introducing the auxiliary sequence given by yn = ∑
µ∈N

zn(µ)2, (2.20) and (2.23) yield

the following recurrence relations.

∀n ∈ N0 ∶ xn+1 = 2xn + 2yn + 1, yn+1 = 2xn + 3yn + 1 , (2.29)

whence

xn+2 = 2xn+1 + 2yn+1 + 1 = 2xn+1 + 4xn + 6yn + 3 = 5xn+1 − 2xn .

To solve the recurrence

x0 = 0, x1 = 1, ∀n ∈ N0 ∶ xn+2 = 5xn+1 − 2xn , (2.30)
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we recall the idea of Exercise 0.1 and try the ansatz ξn = Θn for the recurrence
equation, leading to Θ2 = 5Θ − 2, such that Θ± = (5 ± √17)/2. The solution of

(2.30) is therefore xn = Θn
+ −Θn

−√
17

(cf. [141, Proposition 6i]). (Inserting this into the

first equation in (2.29), we further get yn = 1

4
(
√
17 + 1√
17

Θn
+ − 2 +

√
17 − 1√
17

Θn
−).)

Remark 2.38. Although it is not too surprising, in particular in view of the abun-
dance of applications of the Fibonacci sequence, that the same recurrence might
occur in different settings, let us mention that xn+1 (cf. [296, A107839]) has been
identified as the number of so-called Kekulé structures of a specific class of ben-
zenoid hydrocarbons with the molecular formula C12n+2H6n+4; cf. [66, p. 75–78].
This is a nice example of the mathematical microcosmos the TH embraces.

We summarize the discussion on TH tasks with two optimal solutions
(cf. [149, Proposition 3.9]).

Proposition 2.39. Among the 9n tasks for the TH with n ∈ N0 discs,

3

4
(
√
17 + 1√
17

Θn
+ − 2 ⋅ 3n +

√
17 − 1√
17

Θn
−) = 3⎛⎝∑µ∈N zn(µ)

2 − ∑
µ∈N

zn(µ)⎞⎠
have two optimal solutions.

Proof. We only have to remark that the desired number is equal to 6
n−1

∑
k=0

xk3
n−1−k,

because there are 3n−1−k states of larger discs if k+1 is the largest disc not initially
on its goal peg. An application of Lemma 2.18 then yields the stated formula on
the left. For the right-hand one have a look at Lemma 2.29. ◻

The first few values of the sequence in Proposition 2.39 are

0,0,6,48,282,1476,7302,35016,164850, . . . .

Note that, since Θ+ ≈ 4.56 < 9, the portion of tasks with non-unique solutions is
asymptotically, for n → ∞, vanishing. This is not the case for those tasks, where
two moves of the largest disc are necessary. To see this, let us define wn as the
number of tasks 0s → 2t, s, t ∈ T n where disc n + 1 necessarily moves twice in an
optimal solution; in other words, we consider the case ◻ => in (2.26). By a similar
argument as before (just put µ = d(s; 1,2) and ν = 2n − d(t; 1,0)), we see that

wn = ∑
µ∈N

∑
ν∈N

(ν < µ)zn(µ)zn(2n − ν) .

In analogy to the solution of Exercise 2.22 we decompose the set of pairs (µ, ν) to
be considered in evaluating wn+1 according to

(ν < µ) = (ν < µ < 2n) + (ν < µ = 2n) + (ν < 2n < µ) + (ν = 2n < µ) + (2n < ν < µ)
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and arrive at the recurrence

w0 = 0, ∀n ∈ N0 ∶ wn+1 = 2wn − yn + 1

2
(9n − 1) ,

which can be solved with the aid of Lemma 2.18 to yield wn =
14

9n − 2n − Θn
+ −Θn

−

2
√
17

,

so that we obtain the following result (cf. [141, Proposition 6ii]).

Proposition 2.40. Among the 6 ⋅9n tasks for the TH with n+1 discs, n ∈ N0, where
the largest disc n + 1 is originally not on its goal peg,

3

7
(9n − 2n) − 3√

17
(Θn
+ −Θn

−)

need two moves of disc n + 1 in the only optimal solution.

This means that if TH tasks (with a large number of discs) are chosen ran-
domly, then, in an optimal solution, the largest disc will not move at all in 1/3,
exactly once in 13/21, and exactly twice in 1/21 of all cases, the possibility of two
solutions being negligible (cf. [141, Corollary 2]).

For the CR the average distance of Rn was given in (1.5). We will now
approach the formidable task to find d(Hn

3 ). As with the CR, we will calculate
the Wiener index W (Hn

3 ) or rather, for symmetry reasons, the total number of
moves over all tasks, namely δn ∶= 2W (Hn

3 ) = ∑
(s,t)∈(Tn)2

d(s, t). Quite obviously,

δ0 = 0. To obtain a recurrence relation, we observe that

δn+1 = ∑
(s,t)∈(Tn+1)2

(sn+1 = tn+1) d(s, t) + ∑
(s,t)∈(Tn+1)2

(sn+1 ≠ tn+1) d(s, t)
= 3δn + 6 ∑

(s,t)∈(Tn)2
d(0s,2t)

= 3δn + 6 ∑
(s,t)∈(Tn)2

d1(0s,2t) − 6un ,

where (cf. the expression for wn)

un = ∑
µ∈N

∑
ν∈N

(ν < µ) (µ − ν)zn(µ)zn(2n − ν) .

With the aid of Corollary 2.15, we get

∑
(s,t)∈(Tn)2

d1(0s,2t) = 9n (2
3
(2n − 1) + 1 + 2

3
(2n − 1)) = 1

3
9n(2n+2 − 1) .

To evaluate the sequence un, we proceed as before and introduce the auxiliary
sequence

vn = ∑
µ∈N

∑
ν∈N

(ν < µ) (µ − ν)zn(µ)zn(ν) .
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With the same decomposition as in the case of wn and making extensive use
of (2.20), (2.23), and Lemma 2.29, we arrive at the recurrence relations

un+1 = 2un + 2vn + 1

5
(3n + 1)(6n − 1), vn+1 = 2un + 3vn + 1

5
(6n − 1) + 1

2
6n(3n − 1) .

Combining these, we arrive at a linear non-homogeneous recurrence of second
order (cf. [229, Chapter 6]) for the un, namely

u0 = 0 = u1, ∀n ∈ N0 ∶ un+2 = 5un+1 − 2un + 4 ⋅ 18n .
Since the homogeneous part of the recurrence relation is the same as for xn, we
already know that its general solution is aΘn

+ + bΘn
−. Observing that any two

solutions of the inhomogeneous equation differ by a solution of the homogeneous
one (this is a consequence of the linearity), we are left with finding a particular
solution of the inhomogeneous equation. The ansatz c ⋅ 18n is a reasonable guess
and indeed leads to a solution if c = 1/59. So un = 18n/59 + aΘn

+ + bΘn
−. Using the

two seeds we arrive at

un = 1

59
18n − 1

118
(1 + 31

17

√
17)Θn

+ − 1

118
(1 − 31

17

√
17)Θn

− .

Putting everything together, the recurrence relation for δn reads

∀n ∈ N0 ∶ δn+1 = 3δn + 466

59
18n − 2 ⋅ 9n + 3

59
(1 + 31

17

√
17)Θn

+ + 3

59
(1 − 31

17

√
17)Θn

− .

Complicated as it might look, this is just a non-homogeneous linear recurrence of
first order with constant coefficient and can therefore be solved for the seed δ0 = 0
by Lemma 2.18 to yield (cf. [141, Proposition 7])

δn = 466

885
18n − 1

3
9n + 6

59
(2 + 3

17

√
17)Θn

+ − 3

5
3n + 6

59
(2 − 3

17

√
17)Θn

− . (2.31)

We thus arrive at:

Theorem 2.41. The average distance on Hanoi graph Hn
3 , n ∈ N0, is d(Hn

3 ) = δn/9n
with δn given by (2.31). Asymptotically, for large n, it is 466/885 of the diameter
of Hn

3 .

Independently, this result has been given, albeit in somewhat cryptic formu-
las, by Chan [52, Theorem 1 and Corollary], who even determined the variance
[52, Theorem 2 and Corollary]; its asymptotic value is 904808318/14448151575
(cf. [155, p. 136]). Chan’s approach is essentially to consider distances between
vertices 0s and 2t, s, t ∈ T n, in a weighted graph obtained from H1+n

3 by reducing
the whole subgraph 1Hn

3 to a single edge of weight 2n.

An impressive formula like (2.31) cannot be without significance! And indeed,
as indicated in the introductory chapter, it has found an application to the seem-
ingly unrelated Sierpiński triangle. Stewart called this “yet another demonstration
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of the remarkable unity of mathematics” [304, p. 106] (translated in [305, p. 13])
and in fact it was him who pointed out in that article that “as the number [n] of
discs becomes larger and larger, the graph [Hn

3 ] becomes more and more intricate,
looking more and more like the Sierpiński gasket”. (In the French original, Stewart
used the much more romantic cognomen “napperon de Sierpiński”—Sierpiński’s
doily.) Based on the observation of Stewart’s, Hinz and A. Schief were able to
make the notion of this limit precise; see [155]. In fact, it can be viewed as the
object in the plane which one obtains by rescaling the diameter 2n − 1 of the
canonical drawing of Hn

3 to the side length of the Sierpiński triangle, say 1, and
letting n tend to infinity. Note the difference to the construction of the Sisyphean
Hanoi graph H∞3 which is not a bounded set.

The distance on the Sierpiński triangle can be derived from one of the three
equivalent constructions of that object, namely to take the closure of the set of
lines obtained by successively adding triangles as in the bottom part of Figure 0.14.
It can be shown (cf. [155, Theorem 1]) that any point x on ST can be joined by
a rectifiable curve (of length at most 1) lying completely on ST to one of the
corners of ST, and consequently x can be joined to any other point y on ST; the
infimum (in fact, minimum) of the lengths of such curves is then d(x, y). While
it is obvious that d(x, y) ≥ ∥x − y∥ for the euclidean norm, with equality for any
two points lying on a side of one of the constituting triangles, the (sharp) estimate
d(x, y) ≤ 2∥x − y∥ has to be proved by induction; see Exercise 2.24.

For other metric properties of ST it is tempting to use self-similarity argu-
ments. Let us, for instance, ask for the average distance γ to a corner point of
ST, the top one, say. Again we treat the question of measure in a naive way; see
[155, Definition 2] for details. With probability 1/3 the randomly chosen point x

lies in the upper subtriangle of ST, such that its expected distance to the top is
γ/2. With probability 1/3, the point x lies in the bottom left subtriangle and the
shortest curve linking it to the top will go through the only common point of the
two subtriangles. Hence the expected distance of x from the top is (γ + 1)/2. The
same applies to x in the bottom right subtriangle. All in all we get

γ = 1

3
⋅ γ
2
+ 2

3
⋅ γ + 1

2
= γ

2
+ 1

3
,

such that γ = 2/3.
Let us now employ the same type of argument to determine the average

distance δ on ST. With probability 1/3, the two random points lie in the same
subtriangle, such that their expected distance is δ/2. For the other pairs the short-
est path passing through the shared point of their respective subtriangles has
expected length 2 ⋅ (γ/2) = γ, such that this time

δ = 1

3
⋅ δ
2
+ 2

3
⋅ γ = 1

3
⋅ δ
2
+ 4

9
,

whence δ = 8/15. This is about as easy as it is false!
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To see why, let us return to the TH. If we can show that the metric properties
of Hn

3 and the nth order approximation of ST are asymptotically, for large n, the
same, we may let n go to infinity in (2.31) and obtain the following surprising
result [155, Theorem 2].

Theorem 2.42. The average distance on the Sierpiński triangle is
466

885
(of the

diameter).

The way this limit process is justified is intimately connected with the in-
troduction of another class of graphs, the so-called Sierpiński graphs Sn

3 . In [155]
they are defined (Definition 6) and it is shown that they are isomorphic to the
corresponding Hn

3 (Lemma 2). These graphs, which can, of course, be viewed as
produced by an alternative labelling of the Hanoi graphs, turned out to be so use-
ful for the theory of the TH and most interesting in their own, that we will devote
Chapter 4 to them. Readers who are curious about the limit process just employed
may have a quick look at Figure 4.10 to be convinced of its legitimacy. It shows
essentially that any curve in ST can be approximated by a path on a renormalized
Hn

3 . In particular, it follows that diam(ST) = 1 and that Theorem 2.42 is true.
Another interpretation of ST as a sequence of graphs has been given by

M. T. Barlow and E. A. Perkins in [25]. Their graphs, drawings of which are
essentially the unions of triangles we used in one of the constructions of ST and
which have later been called Sierpiński-like graphs, were used to study a diffusion
process on ST arising as the limit of random walks on these graphs. This opened
the new field of analysis on fractals; cf. [318]. Hanoi graphs, in fact a twofold
Sisyphean Hanoi graph, also entered the business, albeit under the name of Pascal
graph in [267]. To understand the reason for this choice of appellation, we come
back to Pascal’s Arithmetical triangle.

2.4.2 Pascal’s Triangle and Stern’s Diatomic Sequence

In Chapter 0 we presented the morphogenesis of ST from AT mod 2. The latter
was viewed in [228, p. 329] as a(n infinite) graph by joining closest (odd) neighbors
in AT by edges; cf. Figure 0.12. Since there is a connection between ST and Hanoi
graphs, by transitivity there must be a relation between the latter and the graph
AT mod 2, namely Hn

3 ≅ AT2n mod 2 (see [142, Theorem 1]), where ATk mod 2 is
the graph obtained from the first k rows of the odd entries of AT; see the black
part of Figure 2.26.

An isomorphism between Hn
3 and AT2n mod 2, which Poole has called Lucas

correspondence in [263], can be given by

s↦ ( n

∑
d=1

(sd ≠ (s ◁
0)d) ⋅ 2d−1,

n

∑
d=1

(sd = (s ◁
2n mod 2)d) ⋅ 2d−1) , (2.32)

where the vertex of AT mod 2 representing combinatorial number (k
`
) is given

by the ordered pair (k, `). In fact, by (2.8), the two sums in (2.32) are d(s,0n),
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Figure 2.26: The graph ATk mod 2 for k = 12 (black), its subdiagonals (red), even
combinatorial numbers (light green), Fibonacci numbers (dark green), and Stern
numbers (blue)

i.e. the distance of s to the top corner of Hn
3 , and 2n − 1 − d(s,2n mod 2), which

is the complement of the distance to the bottom right corner according to our
convention, respectively. That the image refers to an odd combinatorial num-
ber follows from (0.8). The number of images is 3n by Corollary 2.17; injectivity
and compatibility with the graph structures can be deduced from Remark 2.14.
This construction actually produces an isomorphism between the Sisyphean Hanoi
graph H∞3 and the graph AT mod 2, identifying 0∞ with (0

0
).

One of the most fruitful techniques in mathematics is to transfer properties
from one object to an isomorphic one. So everything we learned about the graphs
Hn

3 is now also true for AT2n mod 2. This approach was taken in [142]. As a
prototype of such a derivation of statements about combinatorial numbers, we let
the reader prove a result of J. W. L. Glaisher in Exercise 2.25.

Here is a more striking example. In (0.5) we have seen that the entries (odd
and even) on the νth subdiagonal of AT (the red lines in Figure 2.26), ν ∈ N, i.e. all
(ν−1−`

`
) with ` ∈ [⌊ν+1

2
⌋]

0
, add up to the Fibonacci number Fν ; see Figure 2.26.

For ν ∈ [2n] and every odd combinatorial number on the νth subdiagonal, the
difference of the distances to the bottom right and to the top corner of AT2n mod 2
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is 2n − ν. So their number is zn(2n − ν) = b(ν) [142, Proposition 3]; compare the
red lines in Figure 2.26 with those of Figure 2.21.

Proposition 2.43. On the νth subdiagonal of AT, ν ∈ N, there are b(ν) odd entries.

With the recurrence from (2.28), the proof of Proposition 2.43 is implicit in
[51, p. 18f]. For an easy statement about Stern numbers b(ν) see Exercise 2.26.

Stern’s sequence has been thoroughly studied over the years; rich sources
are [253] and the survey paper of I. Urbiha [328] including information on the
history of the sequence and many of its properties.

For instance, it has been shown by D. Parisse [253, Theorem 2] (cf. also
[145, Theorem]) that for fixed µ ∈ N0, the sequence (zn(µ))n∈N0

is eventually
in arithmetic progression, which led him to an efficient method to calculate its
elements with the aid of continued fractions. Since Stern numbers can easily be
computed from (2.28), we may use

∀n ∈ [nµ]0 ∶ zn(µ) = 0, ∀n ∈ N0 ∖ [nµ]0 ∶ zn(µ) = (n − nµ)b(µ) + b (2nµ − µ) ,
(2.33)

where nµ is the smallest integer such that µ < 2n, i.e. n0 = 0 and nµ = ⌊lb(µ)⌋ + 13

otherwise, to determine zn(µ) efficiently for large n; (2.33) is an easy consequence
of (2.20).

As a curiosity we note that from Theorem 2.28 we get the impressive formula
uniting Fibonacci, Stern, and Jacobsthal numbers

∀n ∈ N0 ∶ Fn = b(Jn) .
Let us finally mention just one more property of Stern numbers, namely a specific
interpretation of the sequence.

A hyperbinary representation of a non-negative integer ν is a representation
of ν as a sum of powers of 2, each power being used at most twice. We will employ
the notation (sn . . . s1)[2] to describe the hyperbinary sum ∑n

d=1 sd ⋅ 2d−1, sd ∈ T .
Let H(ν) denote the set of all hyperbinary representations of ν, where any two
representations of the same integer differing only by zeros on the left-hand side
are identified. For instance, (1)[2] is the same representation of 1 as (01)[2].

Clearly, ∣H(0)∣ = 1 = ∣H(1)∣. When x = (sn . . . s1)[2] is odd, then s1 must be 1,
hence

∣H(2ν + 1)∣ = ∣H(ν)∣, ν ∈ N .

When x is even, s1 may be 0 or 2 which in turn implies that

∣H(2ν)∣ = ∣H(ν)∣ + ∣H(ν − 1)∣, ν ∈ N .

Comparing this recurrence with the one that characterizes Stern’s sequence,
namely (2.28), we obtain:

3
lb(x) = ln(x)/ ln(2) is the binary logarithm of x.
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Theorem 2.44. For every ν ∈ N0, ∣H(ν)∣ = b(ν + 1).
Theorem 2.44 is, of course, also an immediate consequence of the identity in

(2.19): for ν ∈ [2n]0, there is a one-to-one correspondence between the hyperbinary
representations ν = ∑n

d=1 sd ⋅ 2d−1, sd ∈ T , and the representations of µ ∶= 2n − 1 −
ν ∈ [2n]0 as µ = ∑n

d=1 s̃d ⋅ 2d−1 with s̃d = 1 − sd ∈ T̃ = {−1,0,1}, because there
cannot be a hyperbinary sum for ν with sm ≠ 0 for some m > n; it follows that
∣H(ν)∣ = zn(µ) = b(2n − µ) = b(ν + 1).

N. Calkin and H. S. Wilf [47] constructed a binary tree which contains every
positive fraction in lowest terms precisely once and such that reading the successive

rows of this tree results in the sequence ( H(n)H(n + 1))
n∈N0

. Since Q+ ∶= {x ∈ Q ∣ x > 0}
is equivalent to the set of these fractions, we obtain a bijection from N to Q+,
namely

n↦ b(n)
b(n + 1) .

Compared to Cantor’s diagonalization (cf. p. 36) or the surjection onto Q ∩ [0,1]
obtained from Brocot’s array (cf. p. 19) this has the advantage that no fraction is
repeated in the sequence.

The relations between Stern’s diatomic sequence and graphs of Hanoi type
become a little more lucid in the context of Sierpiński graphs to which we will
turn in Chapter 4. The same applies to some extent to the notorious P2 decision
problem, to which we will nevertheless come back right now.

2.4.3 Romik’s Solution to the P2 Decision Problem

We warn the leisurely reader that the contents of this subsection may become
somewhat technical and encourage those who lack patience to skip it.

Instead of averaging over many optimal solutions, we will now look at individ-
ual tasks is→ jt, where s, t ∈ T n, n ∈ N, and with i, j, k ∈ T such that ∣{i, j, k}∣ = 3.
We want to construct an algorithm which decides efficiently about the number
of moves the largest disc n + 1 has to make in a shortest path. Since i ≠ j, we
know from Theorem 2.32 that there are three possible cases: “I” will mean that
n + 1 moves only once, “II” that it necessarily moves twice, and “I/II” that both
strategies lead to an optimal solution. We can exclude n = 0, because there is
no choice in H1

3 . We only consider the standard case that i ≠ j; tasks with some
largest discs initially already in their goal position can be reduced to the standard
case by appropriate pre-processing, i.e. ignoring these discs.

From (2.26) we know that

d1(is, jt) ◻ d2(is, jt) ⇔ ρ ∶= d(s;k, j) + d(t;k, i) ◻ 2n, ◻ ∈ {<,=,>} ,
so that we may now concentrate on the right side of this equivalence. By definition
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and with (2.8),

ρ = d(s, kn) − d(s, jn) + d(t, kn) − d(t, in) = n

∑
d=1

βd ⋅ 2d−1,

where

βd = (sd ≠ (s ◁
k)d) − (sd ≠ (s ◁

j)d) + (td ≠ (t ◁
k)d) − (td ≠ (t ◁

i)d)
= (sd ≠ (is ◁

j)d) − (sd ≠ (is ◁
k)d) + (td ≠ (jt ◁

i)d) − (td ≠ (jt ◁
k)d) .

There are 9 different pairs (sd, td), leading to only 5 values of βd, namely

βd =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2, if (sd, td) = ((is ◁
j)d, (jt ◁

i)d) ,
−1, if (sd, td) = ((is ◁

j)d, (jt ◁
j)d) or ((is ◁

i)d, (jt ◁
i)d) ,

0, if (sd, td) = ((is ◁
j)d, (jt ◁

k)d) or ((is ◁
i)d, (jt ◁

j)d)
or ((is ◁

k)d, (jt ◁
i)d) ,

1, if (sd, td) = ((is ◁
i)d, (jt ◁

k)d) or ((is ◁
k)d, (jt ◁

j)d) ,
2, if (sd, td) = ((is ◁

k)d, (jt ◁
k)d) .

For δ ∈ [n + 1]0 let ρδ =
δ

∑
d=1

βd ⋅ 2d−1. Then ∣ρδ ∣ < 2δ+1 and ρδ − ρδ−1 = βδ ⋅ 2δ−1
for δ ∈ [n]. Let us look at three cases.

A ∶ ρ ◻ 2n ⇔ ρδ ◻ 2δ,
B ∶ ρ ◻ 2n ⇔ ρδ ◻ 0,
C ∶ ρ ◻ 2n ⇔ ρδ ◻ −2δ .

For δ = n we are in case A, because ρ = ρn. Now let us assume that for some δ ∈ [n]
we are in case A. Then

ρδ ◻ 2δ⇔ ρδ−1 ◻ (2 − βδ)2δ−1.
For βδ ≤ 0 it follows that ◻ =<, i.e. we detect a type I task and stop; for later
purpose, we will call this the terminating case D. For β = 1 we have ρ ◻ 2n ⇔
ρδ−1 ◻ 2δ−1, and we stay in case A, but with δ replaced with δ − 1. Similarly, if
βδ = 2, then we have to continue with case B and δ − 1 instead of δ.

If we are in case B for some δ ∈ [n], then ρδ◻0⇔ ρδ−1◻−βδ ⋅2δ−1. For βδ = −2
we end in D. For βδ = −1 we go to A with δ replaced with δ −1. For βδ = 0 we stay
in B for δ−1 and for βδ = 1 we move to case C for δ−1. Finally, if βδ = 2, then two
moves of disc n + 1 are necessary and we end in what we call terminating case E.

Finally, in case C for some δ ∈ [n], we have ρδ ◻ −2δ⇔ ρδ−1 ◻ −(2 + βδ)2δ−1.
Here, for βδ = −2 we have to move to B and change δ to δ−1. Similarly for βδ = −1,
where we stay in C. Finally for βδ ≥ 0 we have ◻ => and we end in E.

This analysis shows that all possible cases are covered and that we can base
Algorithm 12 on an automaton which is essentially due to Romik (cf. [272, Fig-
ure 2]) and shown in Figure 2.27.
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Figure 2.27: Romik’s automaton for the P2 decision problem

Algorithm 12 P2 decision algorithm for H1+n
3

Procedure p2H(n, s, t)
Parameter n: number of discs minus 1 {n ∈ N}
Parameter s: initial configuration {s ∈ T 1+n}
Parameter t: goal configuration {t ∈ T 1+n, tn+1 ≠ sn+1}

i← sn+1, j ← tn+1
start in state A of P2 automaton
δ ← n

while δ > 0
replace pairs (ι, κ) on the arcs by (sδ+1 ◁

ι, tδ+1
◁
κ)

apply automaton to pair (sδ, tδ)
{algorithm STOPs if automaton reaches terminating state D or E}

δ ← δ − 1
end while

Starting with δ = n and in state A of the automaton, the labels (ι, κ) on the
arcs of the automaton have to be updated to obtain ((is ◁

ι)δ, (jt ◁
κ)δ) which can

then be compared with the pair (sδ, tδ) by the automaton which will accordingly
adapt its state. The automaton either stops, if reaching states D (one move of
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largest disc; class I task) or E (two moves; class II task) or ends in one of the other
states when input data have run out, i.e. after n steps for δ = 0. In the latter case,
ending in A means ρ ◻ 2n ⇔ ρ0 ◻ 1; since ρ0 = 0, we have ◻ =<, such that disc
n + 1 makes one move only. In B we have ρ ◻ 2n⇔ ρ0 ◻ 0, such that ◻ is equality
and we have a draw, that is there are two shortest paths using one or two largest
disc moves, respectively (class I/II task). If the algorithm ends in state C, then
ρ◻2n⇔ ρ0◻−1, such that ◻ => and we necessarily have two moves of the largest
disc.

Note that in many cases the algorithm stops after the input of less than n+1
pairs (sδ, tδ). However, the update of labels in the automaton is clumsy and in fact
Romik applied his automaton unchanged to the P2 decision problem for Sierpiński
graphs Sn

3 . We will therefore postpone examples and the discussion of complexity
to Chapter 4.

2.4.4 The Double P2 Problem

Z. Šunić [320] studied the problem of simultaneously solving two P2 tasks. More
precisely, recall first that for a given regular state, a legal (possibly empty) move
is uniquely determined if the idle peg of the move is prescribed. Now, we are given
two initial states s, s′ ∈ T n and two goal states t, t′ ∈ T n. The task is to find a
sequence of idle pegs such that the moves dictated by the idle pegs simultaneously
transfer state s to t and state s′ to t′. We will use the notation

s → t ∥ s′ → t′

for this task and call it the double P2 problem. In Figure 2.28 a solution for the
task 00 → 01 ∥ 01 → 02 is shown. The color of the arrow of a move indicates the
idle peg of that move.

The task s → t ∥ s′ → t′ is called solvable if there exists a sequence of idle
pegs that transfers state s to t and state s′ to t′. Applying the theory of Hanoi
Towers groups (cf. infra, p. 198), D. D’Angeli and A. Donno [67] were able to
characterize solvable tasks as follows (see [320] for an alternative approach):

Theorem 2.45. Let n ∈ N and s, s′, t, t′ ∈ T n. Then the task s → t ∥ s′ → t′ is
solvable if and only if the length of the longest common suffix of s and t is the
same as the length of the longest common suffix of s′ and t′.

Theorem 2.45 in particular implies that the tasks s → t ∥ s′ → t′, for which
s1 /= t1 and s′1 /= t′1 hold, are solvable. Such tasks are called basic double tasks and
for them Šunić [320] proved:

Theorem 2.46. Let n ≥ 3. Then the basic double tasks induce a connected subgraph
Xn of the state graph of the double P2 problem on n discs. Moreover, the diameter
of Xn is at most 11

3
2n.
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Figure 2.28: A solution for a double P2 task

The diameter of Xn can also be bounded from below, it is at least 2 ⋅2n. This
follows from another result of Šunić asserting that an optimal solution of the task

0n → 0n−11 ∥ 0n−11→ 0n−12

makes exactly 2 ⋅ 2n moves for any n ≥ 3. (Note that this is not true for n = 2

because the solution for n = 2 presented in Figure 2.28 makes 6 moves.) We also
mention that for the task

0n → 2n ∥ 2n → 0n

a solution is constructed in [320] that makes 1

3
(2n+2 − (−1)n) moves for any n ≥ 2

and it is conjectured that this number of moves is optimal.

2.5 Exercises

2.1. Verify Equation (2.1).

2.2. Prove Proposition 2.2 without referring to the Gros sequence.

2.3. Prove that Olive’s algorithm is correct.

2.4. Show that neither of the sequences h and o is strongly square-free.
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2.5. (Schoute [286]; cf. [34, p. 862]) Use Proposition 2.3 to describe a human
algorithm for the shortest path from a tower on peg 0 to a tower on peg 2,
i.e. one which does not need large long-term memory.

2.6. (Bennish [28]) Recall from Equation (0.4) that F0 = 0, F1 = 1, and Fk =
Fk−1 +Fk−2, k ≥ 2, are the Fibonacci numbers. Let an be the number of legal
arrangements of discs on the intermediate peg in the optimal solution of the
classical TH task with n discs. Show that an = Fn+1 for any n ∈ N0.

2.7. Prove Proposition 2.4.

2.8. A snapshot from Benares shows the Brahmin on duty moving disc δ ∈ [64]
and the Tower of Brahma with the other discs. How can we determine the
age of the universe?

It has been observed (by Schoute already; cf. [286, p. 275]) that the
Brahmins make precisely one move per second without deviating from the
optimal solution. The current state of the Tower of Brahma shows an empty
goal needle, disc 58 in the hands of the Brahmin on duty, disc 59 on the
intermediate needle, and all the other discs on the initial needle. How old is
the universe?

2.9. (Domoryad [75, p. 76]) Let 8 discs initially be distributed as in Figure 2.29.
The goal is the 8-tower on the middle peg. Describe the optimal solution and
determine its length.

Figure 2.29: Initial state of Domoryad’s task

2.10. a) Let {i, j, k} = {0,1,2} and n ∈ N. Show that d(s, in) ≠ d(s, jn) for all
s ∈ T n ∖ {kn}.
b) (Domoryad [75, p. 76]) Assume that we have 2n discs, n ∈ N, and let
initially the n largest discs lie on peg 0, the others on peg 1. Calculate the
distances of this state to the perfect states 12n and 22n, respectively.

2.11. Complete the argument for Remark 2.14.

2.12. Let j be a fixed peg in a TH with n discs. Determine the number of states
with d(s, jn) = 2n − 1 and characterize them.
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2.13. Calculate the number of moves in the optimal solution for the task in Fig-
ure 2.9 and determine the best first move.

2.14. Determine degrees of vertices of Hn
3 .

2.15. Show that there is a total coloring of Hn
3 using at most 4 colors.

2.16. Show that ∥Hn
3 ∥ = 3

2
(3n − 1).

2.17. Let n ∈ N.

a) Show that in Hn
3 any pair of perfect states is linked by a unique hamiltonian

path (cf. [204, Lemma 6]).

b) Show that Hn
3 is hamiltonian.

c) Are the graphs Hn
3 (semi-)eulerian?

2.18. Prove that the number of codewords in a perfect code on Hn
3 is

1

4
(3n + 2 + (−1)n).

2.19. a) Find a recurrence for the number of matchings of Hn
3 , n ∈ N0.

b) Determine the number of perfect matchings for the graphs obtained from
Hn

3 by deleting one or three perfect states.

2.20. Show that the Sisyphean Hanoi graph H∞3 is connected.

2.21. Show that the radius of H1+n
3 , n ∈ N, is rad(H1+n

3 ) = 3 ⋅ 2n−1 and that for
n > 1 its center consists of the 6 vertices ijin−1, i, j ∈ T, i ≠ j.

2.22. Prove Lemma 2.29.

2.23. Show that (2.27) and (2.28) are equivalent, provided that b(0) = 0 and b(1) =
1.

2.24. Show that d(x, y) ≤ 2∥x − y∥ for x, y ∈ ST and that this bound is sharp.

2.25. Prove that the number of odd combinatorial numbers in row µ ∈ N0 of the
AT is 2q(µ).

2.26. Find out about the parity of Stern numbers b(ν), ν ∈ N0.



Chapter 3

Lucas’s Second Problem

In his early descriptions of the TH (see, e.g., [59]), Lucas pointed out the possibility
of starting with an arbitrary distribution of n discs among three pegs, i.e. allowing
for discs lying on a smaller one. The task is again to arrive at a perfect state
on a preassigned peg, while still obeying the divine rule. This, in Lucas’s opinion
[58], will vary the conditions of the problem of the TH “to infinity”. We may even
go beyond by prescribing an arbitrary, albeit regular, state as the goal. We will
approach this problem in the next section and round this chapter off with a section
on an algorithmic solution to Lucas’s second problem.

3.1 Irregular to Regular

For the sake of this chapter (only), a distribution of discs among pegs in which
larger discs are allowed to lie above smaller ones will simply be called a state. An
irregular state is a state which is not regular in the classical meaning; see Figure 3.1
for an example.

} 109
8

76

5

4

3
2

1

0 1 2

D(0)

}9

Figure 3.1: An irregular state

We consider an arbitrary state s. Let d1, . . . , di1 be the discs, listed from top to
bottom, that are stacked onto peg 0, and let di1+1, . . . , di2 and di2+1, . . . , dn be the

A. M. Hinz et al., The Tower of Hanoi – Myths and Maths,
DOI: 10.1007/978-3-0348-0237-6_4, � Springer Basel 2013
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corresponding discs, also listed from top to bottom, on pegs 1 and 2, respectively.
Then s can be described by the string

d1 . . . di1 ∣di1+1 . . . di2 ∣di2+1 . . . dn ,
where the symbol “ ∣ ” is used to delimit discs among pegs; this notation goes
back to [290]. For instance, the state shown in Figure 3.1 is represented by
6 3 8 ∣ 4 1 7 9 2 ∣ 10 5 . Clearly, every state, regular or irregular, can uniquely be
described in such a way, and different strings correspond to different states. Since
the two symbols “ ∣ ” can appear anywhere, but are interchangeable, we thus infer:

Proposition 3.1. The number of states in the puzzle with n ∈ N0 discs is 1

2
(n+2)! .

Lucas calls this number, for n = 64, “vertiginous” and claims that it has more
than fifty digits. Although this is true, it underestimates the actual size of the
figure by more than 40 digits! Lacking modern computing equipment he might
just have observed that the number has more than 50 factors greater than 10.

In the previous chapter we have considered the graph Hn
3 as a natural math-

ematical model for the TH with 3 pegs. We now extend this idea to the more
general situation in which irregular states are allowed. In this case, however, some
of the edges must be oriented since it is possible that one state can be obtained
from another by a legal move but not the other way round. To be more precise, letÐ→
Hn

3 be the digraph whose vertex set is the set T
n of states and where there is an

arc (σ, τ) from state σ to state τ , if τ results from σ by a legal move of one disc. If
arcs (σ, τ) and (τ, σ) are simultaneously present, it is customary to identify them
with an edge between σ and τ . Hence

Ð→
Hn

3 is an example of a mixed graph, that is a
graph containing both edges and arcs. Clearly,

Ð→
Hn

3 contains Hn
3 as a subgraph. In

this sense the regular states form a subset T n ⊂ Tn, proper for n ≥ 2. In Figure 3.2
the digraphs

Ð→
H2

3 and
Ð→
H3

3 are shown, where the induced subgraphs H2
3 and H3

3

are emphasised, respectively. Note that in the drawing of
Ð→
H 3

3 (cf. [102, p. 34]) six
outer triangles are drawn twice, that is, 18 vertices are drawn in duplicates, so
that the mixed graph contains 60 vertices in agreement with Proposition 3.1.

The problem to transfer discs from a(n irregular) state to a perfect state
obeying the classical rules is called type P3 problem. This problem has been inde-
pendently considered and solved by Hinz in [141, Chapter 2], and C. S. Klein and
S. Minsker in [176]. Hinz approached the theory in the framework of the even more
general type P4 problem, namely to reach a regular state from an irregular one.
Although there are arcs and even edges between irregular states, some (ir)regular
to irregular tasks are not solvable, as, e.g., 21 ∣ ∣ → ∣ ∣21 in

Ð→
H2

3. Therefore, we will
not consider irregular goals.

A state will be addressed by a Greek letter such as σ, and the corresponding
Latin character, like s, will be used to designate its regularization, i.e. the regular
state where all discs are on the same peg as in σ. Our first result [141, Lemma 3]
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Figure 3.2: The mixed graphs
Ð→
H 2

3 and
Ð→
H 3
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repeated occurrences of a vertex or edge, respectively.)
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leads to goal states which are semi-perfect, i.e. states whose regularizations are
perfect.

Lemma 3.2. For every σ ∈ Tn, n ∈ N, and every j ∈ T , there is a semi-perfect state
on j that can be reached from σ in at most 2n − 1 moves; if sn ≠ j, then the goal
state is perfect.

Proof. Induction on n. The case n = 1 is trivial. If sn+1 = j, then consider the
state σ, obtained from σ by ignoring disc n + 1 and all discs underneath that disc
and relabelling the remaining discs. This state is either empty or, by induction
assumption, at most 2n − 1 moves are needed to transfer its discs to peg j. If
sn+1 ≠ j, then σ is empty or can be transferred to a semi-perfect state on peg
3 − j − sn+1 in at most 2n − 1 moves by induction assumption. Then disc n + 1
moves to peg j and finally the n smaller discs to j as well, again in at most 2n − 1
moves. Altogether, at most 2n+1−1 moves are made, and since disc n started from
a peg different from j in the last part of the procedure, the final state is perfect
by induction assumption. ◻

The upper bound in Lemma 3.2 is sharp because it applies to the classical
P0 problem as well. Since we know to solve any P2 task in Hn

3 in at most 2n − 1
moves (cf. Theorem 2.25), we can try to reduce a P4 to a P2 task by going from
the irregular initial state to some regular one (cf. [141, Proposition 8]). We may
assume that n ≥ 2, since otherwise there are no irregular states.

Proposition 3.3. For every σ ∈ Tn, n ≥ 2, there is a regular state t ∈ T n that can
be reached from σ in at most 2n−2 moves.

Remark 3.4. The upper bound is sharp. Take the state σ = 1 . . . (n− 2)n (n− 1) ∣ ∣ .
As long as disc n has not been moved, the state will remain irregular. This move
can only happen after a P0 task for n−2 discs has been solved, which takes another
2n−2 − 1 moves.

Proof of Proposition 3.3 by induction on n. For n = 2 take a look at Figure 3.2. If
disc n + 1 lies at the bottom of peg sn+1 we may apply the induction assumption
on σ. If there is precisely one disc d ∈ [n] underneath n+ 1, we can transfer σ to a
perfect tower on a peg j different from sn+1 and smax([n]∖{d}) in at most 2n−1 − 1
moves by Lemma 3.2, such that after the move of disc n + 1 to peg 3 − sn+1 − j a
regular state is reached. Finally, if there is more than one disc underneath n + 1,
the latter disc can move at the latest in the 2n−2th move according to Lemma 3.2,
and by induction assumption the resulting state can be made regular in at most
another 2n−2 moves. ◻

The main statement [141, Theorem 6] on the P4 problem is now a direct
consequence of Proposition 3.3 and Theorem 2.25:

Theorem 3.5. For every (σ, t) ∈ Tn ×T n, n ≥ 2, there is a path from σ to t in
Ð→
Hn

3

of length less than or equal to 2n−2 + 2n − 1.
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We leave it as an exercise to the reader to show that the upper bound can
not be improved, even for a P3-type task; see Exercise 3.1.

For practical purposes, it will be useful to single out a class of tasks σ → t inÐ→
Hn

3 , namely the special case where disc n is not on the bottom of peg sn in state
σ and sn = tn; all other tasks will be called the standard case. We then have [141,
Proposition 9]:

Proposition 3.6. All standard case tasks in
Ð→
Hn

3 , n ≥ 2, can be solved in at most
2n − 1 moves.

The proof is left as Exercise 3.2. Based on the arguments for Theorem 3.5
(or Proposition 3.6) a recursive algorithm could be constructed which solves every
task in

Ð→
Hn

3 with at most 2n−2 + 2n − 1 (or 2n − 1) moves. However, the resulting
solution needs not to be minimal! One reason is, as for P2 tasks which after all will
also be solved by the algorithm, that there might be an option to move the largest
disc more than once; for special case tasks this is, of course, mandatory. But there
are even tasks where disc n has to move three times for an optimal solution; see
Exercise 3.3! This is, however, the worst case.

Lemma 3.7. In a shortest path from σ ∈ Tn to t ∈ T n in
Ð→
Hn

3 , n ≥ 2, disc n does not
move twice to the same peg; in particular, it moves at most three times. If sn = tn
in a standard case task, then disc n does not move at all.

Proof. As soon as disc n has been moved to some peg, it lies on the bottom of
that peg, where it does not obstruct the moves of other discs. Therefore, all further
moves of disc n would be a waste. The same kind of argument holds for the last
statement. ◻

For special case tasks three moves of the largest disc cannot appear in an
optimal solution.

Lemma 3.8. In a shortest solution for a special case task in
Ð→
Hn

3 , n ≥ 2, disc n

moves precisely twice.

Proof. Assume that disc n moves three times in an optimal σ, t-path P , i.e., by
Lemma 3.7, from i ∶= sn to j to k and back to i = tn, where {i, j, k} = T . We will
construct a σ, t-path P ′ which is strictly shorter than P and employs two moves
of disc n only. By D we will denote the (non-empty) set of discs lying underneath
disc n in state σ.

The moves before the first move of n in P are carried over to P ′, but that
move of n is skipped. All discs from [n − 1] ∖D are now on peg k, and they are
then transferred in P to peg i to be united with those from D in preparation for
the second move of disc n. Instead, in P ′, we move the discs on k to peg j, which
can be done by switching pegs i and j in the moves of P and ignoring moves of
discs from D (which are hidden underneath disc n in P ′ so far). Now the move of
n from j to k in P is replaced by one from i to k in P ′.
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We call the states reached by now σP and σP ′ , respectively. Let d ∈ D be
the largest disc such that the arrangement of d and discs above it on peg i is
regular in σP . Then the regular, albeit possibly incomplete, tower above d has
to be transferred in P to some other peg. The same set of discs forms a regular
arrangement on pegs i and j in σP ′ , because all discs on j have been moved already.
Therefore, the same state as in P can be reached from σP ′ in at most as many
moves.

Now P ′ can be continued just like P . All in all we have saved at least one
move (of disc n). ◻
Remark 3.9. The task n (n − 1) ∣ ∣1 . . . (n − 2) → 01n−1 shows that even for large n

a path with three moves of disc n may just be one move longer than the optimal
path.

Although the number of moves of disc n is fixed by Lemma 3.8, optimal
solutions for special case tasks may still vary depending on the choice of the
intermediate peg. This can lead to non-uniqueness even if the initial state is not
semi-perfect as demonstrated by the example of the task 32 ∣ ∣1 → 13 ∣2 ∣ in Ð→H 3

3.
For standard case tasks, things are more subtle: the largest disc may move

not at all, once, twice, or three times on an optimal path for a P4-type task.
Moreover, there are also some surprises for the number of optimal solutions. For
instance, there are no less than six shortest paths (of length 6) from 43 ∣21 ∣ to
∣12 ∣34 = 2211 in

Ð→
H 4

3 [102, Beispiel 3.4], depending on whether disc 2 moves before
disc 4, immediately after it, or after disc 3 and whether this move is to peg 0 or 2.

We therefore give up the hope for an easy recursive algorithm which finds
optimal solutions for P4 and turn to the more comfortable situation of P3 tasks.

3.2 Irregular to Perfect

After all this it may come as a surprise that with a perfect goal state jn we are
(almost) back to normal. We only need to look at the standard case; cf. [141,
Lemma 7].

Lemma 3.10. In a shortest solution for a standard type task σ → jn in
Ð→
Hn

3 , n ≥ 2,
with sn ≠ j, disc n moves precisely once.

The proof proceeds by constructing a σ, jn-path with only one move of n from
any assumed optimal path employing two or three, as in the proof of Lemma 3.8.
For the details we refer to [141, p. 316f].

Although we now know the itinerary of the largest disc from Lemmas 3.8, 3.7,
and 3.10, we still have choices to make for an optimal path. For instance, in

Ð→
H 3

3, we
may move disc 3 from peg 0 to peg 2 with the smaller discs in regular or irregular
order on peg 1. In special case tasks we also have to decide on the intermediate
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peg to which the largest disc must move to liberate the discs underneath. This
leads to the idea of best buffer discs and special pegs; the following notation will
be used for a fixed state σ ∈ Tn:

• For a given peg i ∈ T , let D(i) = {d ∈ [n] ∣ sd = i}, i.e. the set of discs lying
on i.

• For a given disc d ∈ [n], let d↑ be the set of discs lying atop d.

We refer back to Figure 3.1 for an illustration of these concepts. We will assume
throughout this section that {i, j, k} = T .

In a special case task σ → jn, the special peg for σ, denoted by sp(σ), is
defined as follows. If D(i) = ∅ = D(k), set sp(σ) = i. Otherwise, let n′ be the
largest disc in D(i)∪D(k), say n′ ∈ D(k). Let d0 be the highest disc from n↑ ∪{n}
that is bigger than n′ and let d1 be the first disc bigger than d0 lying below d0.
Continuing in this manner we get the following chain of discs:

n′ < d0 < d1 < ⋯ < dν = n ;
it is possible that ν = 0, that is, n′ < d0 = n. Then

sp(σ) = { i, if ν is even;

k, if ν is odd.

For an example see the left picture in Figure 3.3. There ν = 2 and thus peg i is
special.

ki

n’

j

d0

d1

d2=n

ji k

Di Dj
b

Figure 3.3: Special peg i = sp(σ) (left) and best buffer disc b = bb(k;Di,Dj) (right)

A heuristic recipe in all P4 type tasks is to keep intermediate states before
the moves of disc n as irregular as permitted; for a precise formulation of this
practise, see [141, Lemmas 5 and 6]. Therefore, a typical sub-goal is to transfer a
set of top discs Di ⊂ D(i) from peg i and a set of top discs Dj ⊂ D(j) from peg
j to peg k, leaving as many discs from D(k) undisturbed as possible. Hence, the
disc—if it exists—highest on peg k that is larger than all the discs in Di ∪Dj is
called the best buffer disc with respect to k,Di,Dj and denoted by bb(k;Di,Dj).
Buffer means that the disc hides away others below it, but that discs above it and
from Di ∪Dj can be assembled on peg k without violating the divine rule. See
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the right-hand picture in Figure 3.3 for an example. If there is no such buffer disc,
then let bb(k;Di,Dj) be the bottom of peg k.

Now we are ready to present the solution (Algorithm 13) for the irregular to
perfect problem as described in [176].

Algorithm 13 Algorithm irregular to perfect
Procedure p3(n,σ, j)
Parameter n: number of discs {n ∈ N0}
Parameter σ: (ir)regular state {σ ∈ Tn}
Parameter j: goal peg {j ∈ T }

if n ≠ 0 then
if disc n lies on peg j then

if disc n is the bottom disc then
recursively transfer the n − 1 smallest discs to peg j

else {special case task}
i← sp(σ)
k ← 3 − i − j {the auxiliary peg different from i and j}
b← bb(k;D(i), n↑)
recursively move all discs in D(i) ∪ n↑ to peg k leaving b fixed
move disc n from peg j to peg i

b′ ← bb(k;∅,D(j))
recursively move all discs in D(j) to peg k leaving b′ fixed
move disc n from peg i to peg j

recursively transfer the n − 1 smallest discs to peg j

end if
else {standard case task with sn ≠ j}
i← sn
k ← 3 − i − j {the auxiliary peg different from i and j}
b← bb(k;n↑,D(j))
recursively move all discs in D(j) ∪ n↑ to peg k leaving b fixed
move disc n from peg i to peg j

recursively transfer the n − 1 smallest discs to peg j

end if
end if

Algorithm 13 is illustrated in Figure 3.4. The left column schematically
presents the solution for a special case task. The right column of the figure shows
the steps of the algorithm in the standard case.

It is clear from this figure and the considerations in the previous section that
Algorithm 13 solves a standard case P3-type task producing at most 2n − 1 disc
moves and a special case P3-type task in at most 2n−2 + 2n − 1 moves. But Klein
and Minsker claim even more [176, Theorem 3.4(iii)]:
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Figure 3.4: Performance of Algorithm 13 in a special (left) and a standard case
(right)

Theorem 3.11. Algorithm 13 returns an optimal sequence of moves for any task
σ → jn, σ ∈ Tn, n ∈ N0, j ∈ T .

To prove this, one has to show that no algorithm employing an intermediate
peg different from the special peg for the first move of the largest disc in the special
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case or other buffer discs than the best buffers for the moves of the smaller discs can
lead to a shorter solution. For details we refer to [176, p. 288–294]. In fact, with the
extra observation that, similarly to the classical regular case (cf. Exercise 2.10 a)),
the distances of σ to in and kn are equal if and only if σ is semi-perfect on j [141,
Lemma 8], one can even get uniqueness of the solution; cf. [141, Theorem 7] and
[176, Corollary 3.5].

Theorem 3.12. The task σ → jn, σ ∈ Tn, n ∈ N0, j ∈ T , has a unique optimal
solution, except for the case of a semi-perfect but not perfect initial state on peg j,
i.e. s = jn ≠ σ, where (obviously) two symmetric solutions just differ by exchanging
the roles of the pegs different from j.

The proof by induction on n can be found in [141, p. 317f]. The reader is
invited to practise the execution of Algorithm 13 with the example of Exercise 3.4.

In Corollary 2.15 we saw that the average distance of a regular state from a
fixed perfect one is 2

3
(2n − 1), and one may, of course, ask the same question for

the average over all (irregular) states. Klein and Minsker [176, p. 294f] found a
nice argument that this value will be of the order of 2n as well when looked at for
large n; see Exercise 3.5. Their question to find the exact value, however, seems
quite ambitious indeed.

3.3 Exercises

3.1. Find an example of a P3 task in
Ð→
Hn

3 , n ≥ 2, whose solution needs 2n−2+2n−1
moves.

3.2. Prove Proposition 3.6.

3.3. (Hinz [141, Example 3]) Consider the task 53 ∣ ∣421 → ∣1234 ∣5 = 214 . Find
out how many moves are necessary altogether, if disc 5 is to move once only,
exactly twice, or three times, respectively.

3.4. Find out the length of the optimal solution for the task in
Ð→
H 10

3 to get from
the irregular state in Figure 3.1 to the perfect state on peg 2.

3.5. Show that the average length dn of shortest solutions from σ ∈ Tn, n ≥ 2, to
jn, j ∈ T , in

Ð→
Hn

3 satisfies
1

24
2n < dn < 5

4
2n .



Chapter 4

Sierpiński Graphs

On several occasions in Chapter 2 we realized that a different labelling for the
recursively obtained Hanoi graphs Hn

3 (see Figure 2.12) would be desirable. We
will realize this with the same recursive procedure, yielding graphs isomorphic to
Hn

3 , with the same vertex set, but with different edge sets.

We will denote the new graphs by Sn
3 , and call them Sierpiński graphs (with

base 3). The reasons for such a choice of the name will be explained later, in
Section 4.3. Moreover, we will show in the present chapter that the definition of
graphs Sn

3 can easily be generalized to a two-parametric family Sn
p , p ∈ N. The

proofs of most of the properties of graphs Sn
p will not be much more difficult than

the proofs in the special case p = 3. Later, in Chapter 5, we will introduce another
two-parametric family of graphs (the general Hanoi graphs Hn

p ), but (alas!) it will
turn out that to establish their properties for general p is much more difficult than
to obtain them for p = 3.

4.1 Sierpiński Graphs With Base 3

We start, for n = 0, from the same one-vertex graph as in the recursive description
of the graphs Hn

3 , and then proceed as indicated in Figure 4.1.

Note that now all three subgraphs iSn
3 of S1+n

3 are obtained just by translation
from one copy of the graph Sn

3 and we have no need for any special positioning
(compare the situation in Figure 2.13). Figure 4.2 shows the graphs emerging from
the first three recursive steps of this construction (cf. Figure 2.11).

We observe for these four graphs, and then easily give an inductive proof for
arbitrary n, that the vertex sets are just the same as for the corresponding Hanoi
graphs, i.e. V (Sn

3 ) = T n = V (Hn
3 ). An s ∈ T n is again written as s = sn . . . s1. The

A. M. Hinz et al., The Tower of Hanoi – Myths and Maths,
DOI: 10.1007/978-3-0348-0237-6_5, � Springer Basel 2013
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Figure 4.1: Recursive structure of Sierpiński graphs
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Figure 4.2: Sierpiński graphs S0
3 , S1

3 , S2
3 , and S3

3

edge sets of the Sierpiński graphs Sn
3 are given by

E(S0

3) = ∅,
∀n ∈ N0 ∶ E(S1+n

3 ) = {{ir, is}∣ i ∈ T, {r, s} ∈ E(Sn
3 )}

∪ {{ijn, jin}∣ i, j ∈ T, i ≠ j} . (4.1)

The construction from Figure 4.2 can actually be carried on as for the
Sisyphean Hanoi graph to yield the Sisyphean Sierpiński graph S∞3 of Figure 4.3,
where (infinitely many) leading 0s have been omitted from the labels.
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Figure 4.3: The Sisyphean Sierpiński graph S∞3

An isomorphism between S∞3 and AT mod 2 can now be defined much simpler
than in the Hanoi case by

s↦ ( n

∑
d=1

(sd ≠ 0) ⋅ 2d−1,
n

∑
d=1

(sd = 2) ⋅ 2d−1) ,

where again the vertex of AT mod 2 representing combinatorial number (k
`
) is

given by the ordered pair (k, `). The proof that this is in fact an isomorphism
will be the same as before (cf. p. 122), but one needs a new distance formula
corresponding to (2.8) which will be the base for a couple of simplifications. These
can in turn be applied to Hanoi graphs, because restricting the isomorphisms to
the first 2n rows shows that Hn

3 and Sn
3 are isomorphic. A more straightforward

proof of this fact can be obtained by comparing (4.1) with (2.10). The fact that
we have the same recursive structure for both Hn

3 and Sn
3 enables us to construct

an isomorphism directly.
It is obvious that any isomorphism from Hn

3 onto Sn
3 must map the set

{0n,1n,2n} onto itself, since these vertices have degree two in both graphs, while



144 Chapter 4. Sierpiński Graphs

all other vertices are of degree three in both graphs. Because of their special role
and because of their special position in the graph Sn

3 , the vertices in, i ∈ T , are
called extreme vertices (of the graph Sn

3 ).
Note that there is precisely one isomorphism Φ from Hn

3 to Sn
3 mapping in

to in for each i ∈ T . It can be given by

∀s ∈ T n ∀d ∈ [n] ∶ Φ(s)d = sn ◁ ⋯ ◁
sd , (4.2)

with the binary operation ◁ on T as introduced in Section 2.2. We remind the
reader that ◁ is not associative, such that the evaluation of a chain as in (4.2) is
to be understood as performed strictly from the right. That this is the desired
isomorphism can easily be shown by induction on n.

The construction of Φ from (4.2) can already be found in [290, p. 98], where it
was used to establish the existence of a drawing of Hn

3 with straight lines of equal
length, i.e. our standard representation. It is, however, not very efficient, because
the components of Φ(s) have to be calculated, starting from Φ(s)n = sn, without
recourse to those already obtained; for instance, Φ(s)n−2 = sn

◁ (sn−1 ◁
sn−2),

which is, in general, not equal to Φ(s)n−1 ◁
sn−2 = (sn ◁

sn−1) ◁
sn−2. The task

is facilitated by the following observation. For i ∈ T let ϕi ∈ Sym(T ) be the
permutation which has the single fixed point i. Then i

◁
j = ϕi(j) for each j ∈ T ,

and (4.2) reads

∀s ∈ T n ∀d ∈ [n] ∶ Φ(s)d = ϕsn ○ ⋯ ○ϕsd+1(sd) . (4.3)

The composition ○ on Sym(T ) is associative, such that we can construct an algo-
rithm for Φ by defining Φd = ϕsn ○⋯○ϕsd+1 ∈ Sym(T ), whence in particular Φn = id.
Given Φd, we write down Φd(sd) = Φ(s)d and change, as long as d > 1, the per-
mutation to Φd−1 = Φd ○ ϕsd . This algorithm can be realized with the automaton
shown in Figure 4.4. It was for the first time explicitly described by Romik (who
used the results of Hinz and Schief [155]) in [272, Theorem 2]. Romik conceives
his H3-to-S3 automaton as a finite-state machine “translating” from Hanoi states
to Sierpiński labellings. Recognizing Hn

3 and Sn
3 as different graphs, we prefer to

use the language of isomorphisms of graphs.
The graphs Hn

3 and Sn
3 being isomorphic, uniqueness of the isomorphism Φ

with the property ∀ i ∈ T ∶ Φ(in) = in follows from Lemma 2.8. Since Φ also
transforms ijn−1 into ikn−1, {i, j, k} = T , and vice versa, we have Φ−1 = Φ, and the
H3-to-S3 automaton can be used as an S3-to-H3 automaton as well.

With the isomorphism Φ at hand and recalling the definition of (s ◁
j)d from

p. 93, we have:

∀ j ∈ T ∀s ∈ T n ∀d ∈ [n] ∶ sd = (s ◁
j)d⇔ Φ(s)d = j , (4.4)

because (s ◁
j)d = ϕsd+1 ○ ⋯ ○ϕsn(j) and Φ(s)d = ϕsn ○ ⋯ ○ϕsd+1(sd) by (4.3) and

noting that ϕ−1k = ϕk. By virtue of (2.8), we get for s ∈ T n:

dS (Φ(s), jn) = dH (s, jn) =
n

∑
d=1

(sd ≠ (s ◁
j)d) ⋅ 2d−1 =

n

∑
d=1

(Φ(s)d ≠ j) ⋅ 2d−1 ,
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Figure 4.4: Automaton realizing the isomorphism between Hn
3 and Sn

3

where we write dS and dH for the distance in Sn
3 and Hn

3 , respectively. Hence,

∀σ ∈ T n ∀ j ∈ T ∶ d(σ, jn) = n

∑
d=1

(σd ≠ j) ⋅ 2d−1 , (4.5)

where d stands for dS again.
An easy induction shows that the edge set of Sn

3 can be written in the fol-
lowing way (cf. (2.9)):

E(Sn
3 ) = {{sijd−1, sjid−1}∣ i, j ∈ T, i ≠ j, d ∈ [n], s ∈ T n−d} . (4.6)

Formula (4.6) gives rise to the interpretation of Sn
3 as the state graph of a variant

of the TH puzzle, namely the Switching Tower of Hanoi (STH) as described in
the more general setting of graphs Sn

p in [169]. Vertices of Sn
3 stand for legal

distributions of n discs as before in Hn
3 and the edge {sijd−1, sjid−1} represents

the switch of the single disc d with the (possibly empty) subtower consisting of all
smaller discs between pegs i and j for any distribution s of discs larger than d.

The P2 decision problem for S1+n
3 , n ∈ N, is to find out how many times

the largest disc n + 1 moves in an optimal solution for the P2-type task is → jt,
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s, t ∈ T n, i, j ∈ T , where we may assume that i ≠ j, because otherwise the largest
disc will not move at all and the task is reduced to one on a Sierpiński graph of
lower exponent. We proceed by successively entering pairs (sδ, tδ), starting with
δ = n, into Romik’s original automaton in Figure 2.27. Contrary to the procedure
in Section 2.4.3, we do not have to change labels on the arcs of the automaton,
as can be seen by looking at (4.4) or, in other words, comparing (2.8) with the
distance formula (4.5) for Sierpiński graphs.

This leads to the simplified Algorithm 14.

Algorithm 14 P2 decision algorithm for S1+n
3

Procedure p2S(n, s, t)
Parameter n: number of discs minus 1 {n ∈ N}
Parameter s: initial configuration {s ∈ T 1+n}
Parameter t: goal configuration {t ∈ T 1+n, tn+1 ≠ sn+1}

i← sn+1, j ← tn+1
start in state A of P2 automaton
δ ← n

while δ > 0
apply automaton to pair (sδ, tδ)

{algorithm STOPs if automaton reaches terminating state D or E}
δ ← δ − 1

end while

In order to analyze the average running time in which the algorithm decides
which of the alternatives is optimal in a P2 task, it is of utmost advantage to
employ the theory of Markov chains. The reader who was previously not exposed
to this concept may simply skip the next lines and move directly to Theorem 4.1,
or look into some standard source for the basic theory of Markov chains, as for
instance [310].

Let the five states A, B, C, D, and E of Romik’s automaton (Figure 2.27) be
numbered 1, 2, 3, 4, and 5, respectively. Then we can consider the automaton as
a Markov chain with states 1,2,3,4,5, in which the process starts in state 1 and
moves from one state to another with a certain probability. These probabilities
are given by the transition matrix of the automaton

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2/9 1/9 0 6/9 0

2/9 3/9 2/9 1/9 1/9
0 1/9 2/9 0 6/9
0 0 0 1 0

0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

that is, Puv is the probability of a move from state u to state v. Note that P44 =
1 = P55. Such states are called absorbing, and a Markov chain with at least one
absorbing state is called an absorbing Markov chain. Note also that the transition
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matrix P is of the form

P = [ Q R

0 I
] ,

the matrix Q being called the fundamental matrix (of the absorbing Markov chain).
We now collect facts about Markov chains needed here. The entry (Pn)uv is

the probability that the Markov chain, starting in state u, will be in state v after
n steps. In an absorbing Markov chain, Qn → 0 when n → ∞ and I −Q has an
inverse

N = (I −Q)−1 = ∞∑
n=0

Qn .

Now, Nuv is the expected number of times the chain is in state v provided that it
has started in state u. In our case,

(I −Q)−1 =
⎡⎢⎢⎢⎢⎢⎣

7/9 −1/9 0

−2/9 2/3 −2/9
0 −1/9 7/9

⎤⎥⎥⎥⎥⎥⎦

−1

=
⎡⎢⎢⎢⎢⎢⎣

180/133 9/38 9/133
9/19 63/38 9/19
9/133 9/38 180/133

⎤⎥⎥⎥⎥⎥⎦
.

Since we start in state 1, the sum

180

133
+ 9

38
+ 9

133
= 63

38

is the expected number of times we will be in one of the states 1, 2, or 3. In
conclusion, we have arrived at the following remarkable result due to Romik [272,
Theorem 3]:

Theorem 4.1. The average number of disc pairs checked by Romik’s automaton is
bounded above by and converges, as n →∞, to 63

38
.

In other words, the decision problem whether the largest disc moves once or
twice on an optimal path of a P2 task with the largest disc initially not in its goal
position can be solved with the aid of Algorithm 14 by checking 101

38
, i.e. less than

three pairs of discs on the average, namely the pair of largest discs to decide on
which of the six versions of the automaton to employ and the expected 63

38
pairs

of smaller discs processed in Romik’s automaton. Note that in any case at least
two pairs of input data have to be processed by the algorithm.

Or do they? Well, looking at the automaton in Figure 2.27 again, we notice
that the input of j in state A for the first component will lead to the terminating
state D no matter what the second component is. Therefore, in that case, we only
need half a pair of input, such that in A we just need to check 1

3
⋅ 1
2
+ 2

3
⋅1 = 5

6
pairs

of tits or, in other words, save 3 out of 18 input data. The same applies in state C
if the first input is k. So if we build in to the automaton these individual checks,
we will need asymptotically, according to the above probabilistic analysis, only

5

6

180

133
+ 9

38
+ 5

6

9

133
= 27

19
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pairs of input for the automaton, i.e. 46

19
pairs in the algorithm which includes

the very first one. All tasks of the form ij ∗ . . .∗ → j ∗ ∗ . . .∗ need only 1 1

2
pairs

of input. The graph being undirected, the same would, of course, apply to tasks
i∗∗ . . .∗ → ji∗ . . .∗, but we cannot use the trick twice because we have to decide
to which of the two components of the input pairs we want to apply the extended
automaton first.

In comparing Algorithms 12 and 14, one must not forget, however, that the
latter is operating on S1+n

3 . So in order to solve the original P2 decision problem
for Hanoi tasks with the latter algorithm, one has to make use of the isomorphism
Φ described earlier, i.e. Romik’s H3-to-S3 automaton. However, it is not necessary
to convert both s and t completely (this would undo the advantage of checking
fewer pairs of input), but only those pairs (sd, td) which are taken in by the
P2 decision automaton. Therefore one needs two identical copies of the H3-to-
S3 automaton and replace, in every step of Algorithm 14, sd by ρs(sd) and td
by ρt(td), respectively, where ρs and ρt mean one step into the corresponding
H3-to-S3 automata. Examples for this approach can be found in Exercise 4.1.

Romik’s automaton also leads to an alternative proof of the statement anal-
ogous to Proposition 2.33, namely

Proposition 4.2. For every is ∈ T 1+n∖{01+n,11+n,21+n}, n ∈ N, there is a jt ∈ T 1+n

such that there are two shortest paths between these vertices in S1+n
3 .

Proof. Let {i, j, k} = T . We observe that in Romik’s P2-decision automaton of
Figure 2.27, for every ` ∈ T the input (`, k ◁ (i ◁

`)) in state B of the automaton
will keep this state unchanged. Now every non-extreme vertex is ∈ T 1+n is of the
form i1+n−dks with s ∈ T d−1, d ∈ [n]. Define t = kn−d+1t with ∀ δ ∈ [d − 1] ∶ tδ =
k

◁ (i ◁
sδ). Then, for the pair (is, jt), the first input (i, j) chooses the automaton

as in the figure and the subsequent n − d pairs (i, k) will keep it in state A. The
next input pair is (k, k), such that we move to state B of the automaton. But
then, according to the remark above and our definition of t, the automaton will
not leave B anymore. ◻

The P2-decision automaton also makes it easy to see that, on the other
hand, there are non-perfect TH states where one move of the largest disc is always
sufficient to obtain an optimal path to another state; see Exercise 4.2.

Proposition 4.2 is Corollary 3.6 of [149]. In that paper, the considerations of
Section 2.4.1 have been made for Sierpiński graphs, facilitated by the simpler for-
mula for the distance from an extreme vertex. The differences are minor, however;
just replace (2.26) with

d1(is, jt) ◻ d2(is, jt) ⇔ d(s; j, k) + d(t; i, k) ◻ 2n ,
where again ◻ ∈ {<,=,>}. The bijection from T n to T̃ n, s ↦ s̃ for (2.19) is now
trivialized to s̃d = (sd ≠ 0) − (sd ≠ 2) for d ∈ [n] with sd = s̃d + 1. By isomorphy,
the definition of the functions zn in (2.18) does not depend on whether one uses
Hanoi or Sierpiński distance.
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4.2 General Sierpiński Graphs

Recalling that T = [3]0 we can easily generalize the definition of Sierpiński graphs
Sn
3 by replacing the set T in (4.1) by [p]0, where p is an arbitrary positive integer.

The graphs obtained that way are denoted by Sn
p and called (general) Sierpiński

graphs. That means that we define V (Sn
p ) = [p]n0 , E(S0

p) = ∅, and then

∀n ∈ N0 ∶ E(S1+n
p ) = {{ir, is}∣ i ∈ [p]0, {r, s} ∈ E(Sn

p )}
∪ {{ijn, jin}∣ i, j ∈ [p]0, i ≠ j} . (4.7)

Figure 4.5 shows the first four cases for p = 4.
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Figure 4.5: Sierpiński graphs S0
4 to S3
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It is easy to prove (Exercise 4.3) that the vertices s = sn . . . s1, s′ = s′n . . . s′1 ∈[p]n0 are adjacent in Sn
p if and only if there exists a d ∈ [n] such that

(i) ∀k ∈ [n] ∖ [d] ∶ sk = s′k,
(ii) sd ≠ s′d,
(iii) ∀k ∈ [d − 1] ∶ sk = s′d ∧ s′k = sd . (4.8)

Note that if d = 1, then condition (iii) is void; so is (i) if d = n.
This was the original definition of Sierpiński graphs by Klavžar and Miluti-

nović [169] and as in the case p = 3 it lends itself to the interpretation of Sn
p as the

(general) STH.
In a compact form, the edge sets can be described as (cf. (4.6))

E(Sn
p ) = {{sijd−1, sjid−1} ∣ i, j ∈ [p]0, i ≠ j, d ∈ [n], s ∈ [p]n−d0 } .
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An immediate consequence is the size of Sn
p :

∥Sn
p ∥ = (p

2
) n

∑
d=1

pn−d = p

2
(pn − 1) . (4.9)

In particular, ∥S1
p∥ = (p2); in other words, S1

p is isomorphic to the complete graph
on p vertices.

For a fixed s ∈ [p]n−d0 , the subgraph of Sn
p induced by the set of vertices

{ss ∣ s ∈ [p]d0} is denoted by sSd
p in analogy with the notation used in the recursive

definition of Sierpiński graphs with base 3 as illustrated in Figure 4.1. The function
mapping any ss to s is an isomorphism between sSd

p and Sd
p .

For n ∈ N, each Sn
p contains pn−1 isomorphic copies of S1

p , namely the sub-
graphs sS1

p with s ∈ [p]n−10 . They constitute p-cliques, i.e. cliques of order p in Sn
p .

For p ≤ 2 these are the only maximal cliques (with respect to inclusion), such that
the clique number is ω(Sn

p ) = p in these cases. In fact, the formula carries over to
general p.

Theorem 4.3. Let p ≥ 3, n ∈ N. The only maximal cliques in Sn
p are the p-cliques

sS1
p with s ∈ [p]n−10 and 2-cliques induced by edges not included in any of these. In

particular, ω(Sn
p ) = p.

Proof. Induction on n. The graph S1
p consists of just one p-clique. The edge

{ijn, jin} induces a maximal 2-clique in S1+n
p , because a larger subgraph including

it would also contain, without loss of generality, a vertex is with s ≠ jn, but which
can not be adjacent to jin. Each other maximal clique in S1+n

p lies entirely in some
subgraph iSn

p and is therefore, by induction assumption, either of the form isS1
p

with s ∈ [p]n−10 or it is induced by ie, where e ∈ E(Sn
p ) is not contained in any

p-clique of Sn
p and therefore neither is ie in any of the subgraphs isS1

p of S1+n
p . ◻

Remark 4.4. For p ≥ 3, the p-cliques in Sn
p are induced by moves of disc d = 1

alone in the STH, whereas the moves corresponding to maximal 2-cliques involve
more than just the smallest disc. The number of these 2-cliques in Sn

p is therefore,
by (4.9),

p

2
(pn − 1) − pn−1 p(p − 1)

2
= p

2
(pn−1 − 1) .

4.2.1 Distance Properties

An easy induction argument based on the definition in (4.7) shows that Sn
p is con-

nected; the canonical distance function will again be denoted by d. The following
most fundamental result is a generalization of (4.5) to all Sierpiński graphs Sn

p

and was given for the first time in [169, Lemma 4].
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Proposition 4.5. For any j ∈ [p]0 and any vertex s = sn . . . s1 of Sn
p ,

d(s, jn) = n

∑
d=1

(sd ≠ j) ⋅ 2d−1 , (4.10)

and there is exactly one shortest path between s and jn. In particular, for i ≠ j,
d(in, jn) = 2n − 1 .

Proof. By induction on n. The statement is trivial for n = 0. Let n ∈ N0 and
s = sn+1s, s ∈ [p]n0 .

If sn+1 = j, then one can use the shortest path in Sn
p from s to jn and add a

j in front of each vertex. Hence

d(s, j1+n) ≤ n

∑
d=1

(sd ≠ j) ⋅ 2d−1 =
n+1

∑
d=1

(sd ≠ j) ⋅ 2d−1.

If sn+1 ≠ j, we can compose a path from s to j1+n by going from sn+1s to
sn+1j

1+n on a (shortest) path of length ≤ ∑n
d=1(sd ≠ j) ⋅2d−1, then moving to jsnn+1

on one extra edge and finally from here to j1+n in another 2n − 1 steps, altogether

d(s, j1+n) ≤ n+1

∑
d=1

(sd ≠ j) ⋅ 2d−1.

To show that these are the unique shortest paths, respectively, we note that
no optimal path from s to j1+n can touch a subgraph kSn

p for sn+1 ≠ k ≠ j: assume
that kSn

p is the last such subgraph touched by the path. Then the latter must
contain

• one edge entering this subgraph at kin, j ≠ i ≠ k,

• a path from kin to kjn,

• the edge {kjn, jkn}, and

• a path from jkn to j1+n.

By induction assumption this would comprise at least 1+(2n−1)+1+(2n−1) = 2n+1
edges, such that the path cannot be optimal because we already found a strictly
shorter one. ◻

Note that to obtain the next vertex from s = sn . . . s1 on the shortest path
in Sn

p from 0n to 1n, we interpret s, whose pits are 0 or 1, as the binary number
∑n

d=1 sd2
d−1, and then add 1. In particular, this describes the path graph Sn

2 as
shown for n = 3 in Figure 4.6. Obviously, Sn

2 and the graph of the Chinese rings
Rn are isomorphic, the isomorphism being given by the Gray/Gros code.

With the aid of formula (4.10) metric properties of CR and Hanoi graphs, as,
e.g., Propositions 2.13 and 2.16, carry over to general Sierpiński graphs as noticed
by Parisse in [254].
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Figure 4.6: Graphs R3 and S3
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Corollary 4.6. Let p ∈ N and n ∈ N0.
For any s ∈ [p]n0 ,

p−1

∑
i=0

d(s, in) = (p − 1) (2n − 1) . (4.11)

Let jn be a fixed extreme vertex. Then for µ ∈ [2n]0:
∣{s ∈ [p]n0 ∣ d(s, jn) = µ}∣ = (p − 1)q(µ) ; (4.12)

consequently,
2
n−1

∑
µ=0

(p − 1)q(µ) = pn .

Proof. From (4.10) we get

p−1

∑
i=0

d(s, in) =
p−1

∑
i=0

n

∑
d=1

(sd ≠ i) ⋅ 2d−1

= n

∑
d=1

p−1

∑
i=0

(sd ≠ i) ⋅ 2d−1

= n

∑
d=1

(p − 1) ⋅ 2d−1 = (p − 1) (2n − 1) .

For every non-zero bit of µ there are p − 1 ways that the corresponding sd
in (4.10) is different from j, for a zero bit we necessarily have sd = j. This proves
(4.12). ◻

Evidently, all results on eccentricities carry over from Rn and Hn
3 to Sn

2

and Sn
3 , respectively. The methods developed for them can also be employed for

general Sn
p . In particular, the eccentricity of an s ∈ [p]n0 is the maximum of its

distances to extreme vertices jn; see [254, Lemma 2.3]. Identity (4.10) tells us the
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following: if there is an empty peg i in state s ∈ [p]n0 , i.e. s([n]) ⊂ [p]0 ∖ {i}, then
ε(s) = d(s, in) = 2n − 1; otherwise we get (cf. [154, Equation (3.0)])

ε(s) = 2n − 2m + d(s, smm) ,
where s = ss, s ∈ [p]m0 , and m ∈ [n − p + 2] is the smallest disc which lies on the
bottom of any of the pegs. This leads to (cf. [154, Corollary 3.5]; in that paper
one can even find the standard deviation):

ε(Sn
p ) = (1 − ( 2p

p − 1)
−1

)2n − p − 1
p
−

p−2

∑
k=0

(−1)p−k p − 1 − k
2p − k (

p

k
)(k

p
)
n

. (4.13)

The respective formulas (1.4) and (2.25) are, of course, special cases of this. Note
that for fixed p the asymptotic behavior of the average eccentricity is governed by
the first term on the right-hand side of identity (4.13).

The task to find a shortest path between any two vertices of Sn
p can be

reduced to putting together appropriate shortest paths from some vertices to ex-
treme vertices. Let us first state an analogue to the boxer rule Lemma 2.26.

Lemma 4.7. If on a geodesic of S1+n
p , n ∈ N0, the largest disc is moved away from

a peg in the STH, it will not return to the same peg.

Proof. Assume that disc n+1 leaves iSn
p and eventually returns there on a geodesic.

Then this geodesic contains a path P = ijnP ′ ikn, where P ′ is a jin, kin-path with
∣{i, j, k}∣ = 3, because two subgraphs iSn

p and jSn
p are linked by one edge only.

(This already excludes p = 2; for p = 1 the statement is void anyway.) In turn, P ′

must contain a jin, j`n-path, i ≠ ` ≠ j, such that ∥P ′∥ ≥ 2n − 1 by Proposition 4.5.
Hence ∥P ∥ > 2n, but the same proposition yields d(ijn, ikn) < 2n, such that P can
not be part of a geodesic. ◻
Theorem 4.8. Let s = sis, t = sjt ∈ [p]1+n0 with i ≠ j and s, t ∈ [p]d−10 , d ∈ [n + 1].
Then

d(s, t) =min {d(s, jd−1) + 1 + d(t, id−1) ,
d(s, kd−1) + 1 + 2d−1 + d(t, kd−1) ∣ k ∈ [p]0 ∖ {i, j}} .

Proof. By virtue of Lemma 4.7 we may assume that d = n + 1.
Any s, t-path in which disc n + 1 moves only once must lead from s to ijn,

then to jin and finally to t. By Proposition 4.5 and Lemma 4.7, there is a unique
shortest one among these paths; its length is d(s, jn) + 1 + d(t, in) ≤ 2n+1 − 1.

Any s, t-path in which disc n + 1 is moving exactly twice must pass the
vertices ikn, kin, kjn, and jkn with i ≠ k ≠ j, such that, again by Proposition 4.5
and Lemma 4.7, the shortest such path is unique and has length d(s, kn)+1+2n+
d(t, kn).
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A path including more than two moves of disc n + 1 has to contain, by
Lemma 4.7, the passage through two subgraphs kSn

p , `Sn
p , ∣{i, j, k, `}∣ = 4, costing

at least 2n+1 + 1 moves, such that it can not be minimal. ◻
An immediate consequence is the diameter of Sierpiński graphs.

Corollary 4.9. For any p ≥ 2 and any n ∈ N0, diam(Sn
p ) = 2n − 1.

From the computational point of view, Theorem 4.8 can be used to calculate
d(s, t) in O(pn) time. This can be improved by noting (again using Proposition 4.5)
that d(is, jt), where without loss of generality i ≠ j, is obtained from Theorem 4.8
as the minimum of

d(s, jn−1) + 1 + d(t, in−1)
and

d(s, kn−1) + 1 + 2n−1 + d(t, kn−1), k ∈ {sn−1, tn−1} ∖ {i, j} .
Therefore:

Theorem 4.10. The distance between any two vertices of Sn
p can be computed in

O(n) time.

With some further effort (see [169, Theorem 6]) it can also be proved that
there are at most two shortest paths between any two vertices of Sn

p .
Due to the similarity of the metric structure of Sierpiński graphs of higher

base to the cases p = 2,3, we can even extend the methods leading to the average
distances like in (1.5), Proposition 2.40, and Theorem 2.41 to general Sn

p . Wiesen-
berger showed [338, Satz 3.1.10] that the average distance to a fixed extreme vertex

is
p − 1
p
(2n − 1) and determined the numbers of tasks whose optimal solutions need

one or two moves of the largest disc or with a draw [338, Satz 3.1.8]. Based on this,
he obtained the ultimate result for the average distance [338, Satz 3.1.11] which
we only present here to impress the reader!

Proposition 4.11. If we put, for p ∈ N,

αp = p4 − 12p3 + 56p2 − 104p + 68, λp,± = 1

2
p2 − p + 1 ± 1

2
α

1

2

p ,

γp,± = (p2 + 3p − 2) ∓ (p4 + p3 − 30p2 + 58p − 36)α− 1

2

p ,

then for all n ∈ N0:

d(Sn
p ) =(p − 1) (2p

4 + 6p3 − 17p2 + 26p − 16)
p(2p − 1) (p3 + 4p2 − 4p + 8) 2n − p − 2

p
+ p2 + 3p − 6
(2p − 1) (p2 − 7p + 8)p

−n

− p(p − 1)γp,+
2 (p2 − 7p + 8) (p3 + 4p2 − 4p + 8) (

λp,+

p2
)
n

− p(p − 1)γp,−
2 (p2 − 7p + 8) (p3 + 4p2 − 4p + 8) (

λp,−

p2
)
n

.
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At the end of Section 1.1 we mentioned random walks on the CR graph
Rn ≅ Sn

2 . Wiesenberger1 also gave a formula for expected lengths in general Sn
p ,

p ≥ 2 [338, Folgerung 4.3.1]:

de(0n,1n) = p

2
(pn − 1)((p + 2

p
)
n

− 1) = ∥Sn
p ∥((p + 2

p
)
n

− 1) .

For the special case p = 3 this means that a thoughtless person would need an
expected number of approximately 576 thousand moves already for the original
8-disc version of the TH! (For 4 discs, the number is about 806; compare this with
the performance of an ape, albeit on drugs, in the movie Rise of the Planet of the
Apes (2011).)

4.2.2 Other Properties

The previous subsection demonstrates that the distance function is well-
understood in Sierpiński graphs. Next we give some other nice properties of these
graphs and begin with a remark on eulericity. Apart from the trivial cases S0

p , ev-
ery Sn

p has p (extreme) vertices of degree p−1 and pn−p vertices of degree p. Hence
the graphs Sn

1 are eulerian, whereas Sn
2 are non-eulerian, but semi-eulerian. For

p ≥ 3, S1
p ≅Kp is (semi-)eulerian if and only if p is odd, but Sn

p is not semi-eulerian
for n ≥ 2 because then both p > 2 and pn − p > 2 hold.

The proof of the following property is given as Exercise 4.4

Proposition 4.12. For any n ≥ 1 and any p ≥ 3 the graph Sn
p is hamiltonian.

Recall from Exercise 1.5 that the state graph of the Chinese rings Rn contains
precisely two perfect codes if n is odd, and precisely one if n is even. This result
was extended to Hanoi graph Hn

3 in Section 2.3. Now, Rn is isomorphic to Sn
2 and

Hn
3 is isomorphic to Sn

3 , hence the following result due to Klavžar, Milutinović,
and C. Petr [173, Theorem 3.6] complements these developments.

Theorem 4.13. For any p,n ∈ N, the graph Sn
p has a unique perfect code, if n is

even, and there are exactly p perfect codes, if n is odd. In the latter case each
perfect code is characterized by the only extreme vertex it contains.

Figure 4.7 shows perfect codes in Sn
4 for n = 0,1,2,3. The reader is invited

to compare these codes with those of Sn
3 given in the lower part of Figure 2.15.

As already mentioned in Chapter 2, if a graph has a perfect code then its
domination number and the size of the code are equal. Hence Theorem 4.13 also
implies (cf. Exercise 4.5) that for any p,n ∈ N,

γ(Sn
p ) = pn + p(n even)

p + 1 . (4.14)

1with some input from T. Berger
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Figure 4.7: Perfect codes in Sn
4 for n = 0,1,2,3

For a proof of Theorem 4.13 shorter than the original one (by considering
more general almost perfect codes) see S. Gravier, Klavžar, and M. Mollard [115,
Section 2]. In this paper perfect codes were then applied to solve a labelling prob-
lem for Sierpiński graphs (determining an optimal L(2,1)-labelling), a problem
that has its origins in the theory of frequency assignment. Another invariant of
Sierpiński graphs, the hub number, which plays a role in allocation network theory
and is also closely related to the domination number, was determined by C.-H. Lin,
J.-J. Liu, Y.-L. Wang and W. C.-K. Yen [194, Theorem 9].

The automorphism group of Sn
3 is isomorphic to Sym(T ); see Theorem 2.23.

As noticed by Klavžar and B. Mohar for [175, Lemma 2.2], the proof of Theo-
rem 2.23 extends to Sn

p for every p ≥ 3. One first observes that any permutation of
extreme vertices of Sn

p leads to an automorphism of Sn
p . Moreover, these are the

only symmetries, which follows by the fact, immediate from (4.10), that any vertex
s ∈ [p]n0 is uniquely determined by the values d(s, kn), k ∈ [p]0. Theorem 2.23 thus
generalizes as follows:

Theorem 4.14. For any n, p ∈ N, Aut(Sn
p ) ≅ Sym([p]0).

In the rest of the section we briefly present several additional properties of
Sierpiński graphs.

Planarity We already know that all Sn
3 are planar graphs. The same clearly holds

for the graphs Sn
1 and Sn

2 . The only other planar Sierpiński graphs are S0
p ≅

K1, S1
4 ≅ K4, and S2

4 ; for the planarity of the latter and the fact that no
other Sierpiński graph is planar, see Exercise 4.6.
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The crossing number of Sierpiński graphs was studied in [175]. It was
proved [175, Proposition 3.2] that for n ≥ 3:

3

16
4n ≤ cr(Sn

4 ) ≤ 1

3
4n − 4

3
(3n − 2) .

In particular, cr(S3
4) = 12; see Figure 4.8 for a drawing with 12 crossings.
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Figure 4.8: Plane drawing of S3
4 with 12 crossings

It is obvious from the figure that each of the 6 connecting edges {ijj, jii}
contributes 2 crossings and that these could be avoided by gluing a “handle”
to the plane (or sphere) for each such edge and leading the latter over the
surface of that handle. We therefore have an information on the genus, namely
g(S3

4) ≤ 6 [285, Theorem 4.10]; a better estimate is not known.

For two regularizations of Sierpiński graphs the crossing numbers were
expressed in [175, Theorem 4.1] in terms of those of complete graphs, thus es-
tablishing the first non-trivial families of graphs of “fractal” type whose cross-
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ing number is known, provided that Guy’s conjecture or any other statement
about the values of cr(Kp) is confirmed.

Based on the same kind of arguments, T. Köhler showed [181, Satz 3.11]
that

∀p ∈ N ∶ cr(S2

p) = p ⋅ cr(K−p+1) + cr(Kp) , (4.15)

where for q ≥ 2, the graph K−q is obtained from Kq by deleting one edge. In
order to get an explicit value for the right-hand side of (4.15), Köhler also
proved [181, Lemma 3.22] that

cr(K−q ) ≤ 1

4
⌊ q
2
⌋ ⌊q − 1

2
⌋ ⌊q − 2

2
⌋ ⌊q − 3

2
⌋ − 1

2
⌊q − 1

2
⌋ ⌊q − 3

2
⌋ (4.16)

= 1

4
⌊q + 2

2
⌋ ⌊q − 1

2
⌋ ⌊q − 3

2
⌋ ⌊q − 4

2
⌋ .

For q ≤ 8, the inequality in (4.16) was even shown to be an identity, such
that the crossing numbers for S2

p are established for p ≤ 7. One is, of course,
tempted to conjecture that equality holds for all q in (4.16).

Connectivity The connectivity κ (Sn
3 ) = 2 of Sn

3 was determined in Proposi-
tion 2.22. An extension of this result to all Sierpiński graphs is given in
Exercise 4.7.

Chromatic number Recall from Proposition 2.21 that χ(Sn
3 ) = 3 holds for any

n ∈ N. Parisse [254, p. 147] noticed that labelling each vertex s = sn . . . s1 of
Sn
p with s1 yields a p-coloring of Sn

p . Consequently, χ(Sn
p ) = p holds for any

p,n ∈ N. Using this fact it is also not difficult to determine the independence
number of Sierpiński graphs, denoted by α (Sn

p ), see Exercise 4.8.

Edge chromatic number By Proposition 2.21, χ′(Sn
3 ) = 3 holds for any n ∈ N.

It was further shown that an edge-coloring of Sn
3 using three colors is

unique [168, Corollary 3.3]. The edge chromatic number of all Sierpiński
graphs was determined by M. Jakovac and Klavžar, [159, Theorem 4.1]:
χ′(Sn

p ) = p (for p,n ≥ 2). To construct a p-edge-coloring is easy when p is
even: color the p-cliques using p − 1 colors and use the last color on all the
other edges. To obtain such a coloring for odd p is more subtle, see [153]
and [159] for two different constructions.

Total chromatic number Total colorings of Sierpiński graphs were first studied
in [159], but the complete answer was obtained by Hinz and Parisse [153,
Theorem 4]: χ′′(Sn

p ) = p + 1 (for p,n ≥ 2). Since ∆(Sn
p ) = p, it is clear that

χ′′(Sn
p ) ≥ p + 1. See [153, Lemmas 4’ and 5’] for a thoughtful construction

that proves the reverse inequality.

4.2.3 Sierpiński Graphs as Interconnection Networks

It should be clear by now that Sierpiński graphs play an important role in the
theory of the Tower of Hanoi. This was the main motivation for their extensive
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exploration. On the other hand, in parallel and completely independent of the
above described developments, these graphs were proposed and studied in com-
puter science as a model for interconnection networks. We now briefly describe
this point of view.

In order to extend the range of applications of supercomputers, G. Della
Vecchia and C. Sanges [71] proposed a class of recursive scalable networks named
WK-recursive networks. Their goal was to construct networks that would have a
high degree of regularity and scalability, keep internode distances (very) small,
admit self-routing techniques, show a high degree of local density, and more. With
these requirements in mind they proposed the two-parametric WK-recursive net-
works2 WK(p,n) which are almost exactly the same as the Sierpiński graphs Sn

p .
In particular, WK(p,n) and Sn

p are equipped with the same set of vertices. The
only difference is that at each extreme vertex of WK(p,n) a link (an open edge)
is added aimed to be used for further expansions. Considering these links as edges
at extreme vertices, WK(p,n) is then a p-regular graph. (For two other ways how
to regularize Sierpiński graphs see [175].)

In the seminal paper [71], the authors not only introduced WK-recursive
networks but also discussed an actual VLSI (very-large-scale integration) imple-
mentation of these networks and proposed a message exchange algorithm based on
a self-routing technique. G.-H. Chen and D.-R. Duh followed with the paper [55] in
which they determined several structural properties of WK-networks. They deter-
mined their diameter [55, Theorem 2.1] (our Corollary 4.9), their connectivity [55,
Theorem 2.3] (Exercise 4.7), and found out that they are hamiltonian [55, Theo-
rem 2.2] (Proposition 4.12). They also addressed the routing problem (to transmit
a message from a node to another node) and the broadcasting problem (to transmit
a message from a node to all other nodes) in WK-networks by studying (shortest)
paths in WK(p,n). J.-F. Fang, W.-Y. Liang, H.-R. Chen, and K.-L. Ng [101] pre-
sented a simple broadcasting algorithm that, starting from an arbitrary node of
the WK(p,n) network, transmits a message to each node of the network exactly
once in 2n − 1 steps.

As already recalled above, Sierpiński graphs are hamiltonian. For commu-
nication networks, further traversability properties are important. We say that
a graph is pancyclic if it contains cycles of all lengths between 3 and its order.
M. Hoseiny Farahabady, N. Imani, and H. Sarbazi-Azad showed in [156] that the
networks WK(4, n) are almost pancyclic—they contain cycles of all lengths but
of length 5. Another important issue in communication networks is how they be-
have under faulty nodes. In this direction J.-S. Fu [106] proved that in the network
which remains after removing p−4 arbitrary nodes from WK(p,n), any two nodes
are connected by a hamiltonian path.

Yet another name was given to Sierpiński graphs in the computer science
community—iterated complete graphs. They have been investigated since 2001 in
the frame of the “Research Experiences for Undergraduates Program in Mathemat-

2The notation is not standardized; WKp,n and K(p,n) are also used for the same networks.
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ics” at Oregon State University under the supervision of Cull. Numerous related
manuscripts were written, but as far as we know, none was eventually published.
The manuscripts mainly consider problems on iterated complete graphs related
to codes and variants of the TH derived from these graphs. Unfortunately, the
authors of these investigations seemed not to be aware that Sierpiński graphs and
WK-networks had been introduced earlier.

4.3 Connections to Topology: Sierpiński Curve and

We encountered the Sierpiński triangle in Chapters 0 and 2. In this section we
take a more formal topological view to this object and along the way explain the
original motivation for the introduction of Sierpiński graphs.

The Sierpiński triangle is also called triangular Sierpiński curve Σ(3) and
can formally be described as a subset of R2 as follows. For a triangle Σ in the
plain R2 with vertices e0, e1, e2, let ϕ1, ϕ2, ϕ3 ∶ Σ Ð→ Σ be the homotheties
(central similarity transformations) with coefficients 1/2 and centers e0, e1, e2,
respectively. It is obvious that the set obtained from Σ by m removals of the open
middle triangles (cf. the center row in Figure 0.14) may be described as

Σm = ⋃
(λ1,...,λm)∈Λm

ϕλ1
○ ⋯ ○ϕλm

Σ , (4.17)

where Λ = {0,1,2} = T . We denote this set by Λ, since we will show later that any
set may be used in an analogous construction.

After that, the triangular Sierpiński curve Σ(3) is obtained as the intersection
of all these unions:

Σ(3) = ⋂
m∈N

Σm .

In the theory of fractals, the set {ϕ0, ϕ1, ϕ2} is called an iterated function
system, and Σ(3) is its attractor (cf. [308, Section 4]). Moreover, the mapping
X ↦ ϕ0X ∪ ϕ1X ∪ ϕ2X (defined on the subsets X of Σ) is called the Hutchinson
operator , and Σ(3) is the unique compact fixed point of the Hutchinson operator.

Figure 4.9 shows what happens to Σ after three applications of the Hutchin-
son operator, i.e. the sets Σ1, Σ2, and Σ3. To make the figure simpler and more
transparent, ϕiΣ is shortened to i, ϕi ○ ϕjΣ to ij, and ϕi ○ ϕj ○ ϕkΣ to ijk. We
interpret this as graphs in which triangles are vertices, pairs of which are joined
by an edge precisely when they have a point in common, i.e. when they are not
disjoint (cf. [155, Definition 6]). We then get the Sierpiński graphs S0

3 , S1
3 , S2

3 , and
S3
3 , see Figure 4.10.

Now let e0 = (1,0,0), e1 = (0,1,0), e2 = (0,0,1) be points of R3 and let Σ be
the convex hull of these three points (i.e. the standard 2-simplex), cf. Figure 4.11.
This choice of the triangle vertices enables us to give a simple characterization of
the points belonging to Σ(3):

Lipscomb Space
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Figure 4.9: The sets Σ, Σ1, Σ2, and Σ3

Theorem 4.15. For any x = (x0, x1, x2) ∈ R3, x ∈ Σ(3) if and only if there is a
sequence (λk)k∈N ∈ TN such that for every i ∈ T ,

xi =
∞

∑
k=1

(λk = i) ⋅ 2−k . (4.18)

For a proof and a generalization, see [234, p. 347f]. Note that if x = (x0, x1, x2)
satisfies (4.18), then one easily sees that x0 + x1 + x2 = 1, whence x ∈ Σ.

The definition of Sierpiński graphs in [169] was motivated by a different (but
related) topological construction. In [198, 199] S. L. Lipscomb introduced the space
J (τ), now called the Lipscomb space, in the following way. Let Λ be any set of
cardinality τ . Then the set ΛN of all sequences in Λ carries the product topology,
where Λ itself is equipped with the discrete topology. Further, J (τ) is defined as
the quotient topology space ΛN/ ≈, where the equivalence relation ≈ is defined as
follows. For any pair of distinct sequences λ and µ, let λ ≈ µ if and only if there
exists a d ∈ N such that

(i) ∀k ∈ [d − 1] ∶ λk = µk,

(ii) λd ≠ µd,

(iii) ∀k ∈ N ∖ [d] ∶ λk = µd ∧ µk = λd . (4.19)

The corresponding equivalence classes either contain two elements (non-constant,
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Figure 4.11: The set Σ2 as obtained from the standard 2-simplex Σ

eventually constant sequences) or one element (any other sequence, including con-
stant ones). The first type plays the role of “rationals”, the second of “irrationals”
in the quotient space.
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The Sierpiński graphs Sn
p were introduced in [169] after Λ was chosen to be

[p]0 and (4.19), employed in the definition of the equivalence relation ≈ on ΛN,
was modified to (4.8) and used as the definition of adjacency.

Lipscomb proved that J (τ) is a one-dimensional metrizable space of weight
τ , and that the topological product of n + 1 copies of it contains a subspace,
which is a universal n-dimensional metrizable space of weight τ , meaning that it is
itself an n-dimensional metrizable space of weight τ , and that every n-dimensional
metrizable space of weight τ topologically embeds into it.

Since this is quite far away from our topic, we will not give any details here.
The interested reader may consult Lipscomb’s book [200], written in an extremely
reader-friendly style. It offers a wealth of material on topological and fractal-
theoretic aspects and includes detailed historical and motivational background.
For a more compact presentation see [201].

In [234] the generalized Sierpiński curve Σ(τ) was introduced in the same
manner as Σ(3), after replacing the plane and the triangle by an appropriate
Hilbert space and by the closed convex hull of a subset containing τ independent
vectors, respectively. More specifically, for infinite τ , the Hilbert space `2(τ) =
{x = (xλ) ∈ RΛ ∣ ∑λ∈Λ x2

λ < ∞} and Σ = {(xλ) ∈ `2(τ) ∣ ∑λ∈Λ xλ ≤ 1 ∧ ∀λ ∈ Λ ∶
0 ≤ xλ ≤ 1} were employed. Using homotheties ϕλ ∶ Σ Ð→ Σ with coefficients 1/2,
defined by

(ϕλ(x))µ = 1

2
(xµ + (µ = λ)) ,

the generalized Sierpiński curve was obtained as

Σ(τ) = ⋂
m∈N

Σm ,

with Σm as in Equation (4.17). In [234] it was proved that the Lipscomb space
J (τ) is homeomorphic to the generalized Sierpiński curve Σ(τ). Hence, the Sier-
piński graphs are related to the Lipscomb space not only through the adjacency-
equivalence relation link, but also through the (generalized) Sierpiński curve and
the Lipscomb space being topologically isomorphic.

4.4 Exercises

4.1. Let the start distribution in the TH with 4 discs be given by 0220, and
consider five different goal distributions to be reached directly from it:
a) 2022, b) 2210, c) 2211, d) 2112, and e) 2001.
Decide about the number of moves of disc 4 in the corresponding optimal
paths.

4.2. Show that all tasks i1+n−dkjd−1 → t with n ∈ N, d ∈ [n], {i, j, k} = T , and
t ∈ T 1+n of the STH can be solved optimally with at most one move of the
largest disc.

4.3. Connections to Topology: Sierpiński Curve and Lipscomb Space
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4.3. Prove that s, s′ ∈ Sn
p are adjacent if and only if (4.8) holds.

4.4. Show that Sn
p is hamiltonian for any n ≥ 1 and any p ≥ 3.

4.5. Determine the domination number of Sierpiński graphs, that is, prove (4.14).

4.6. Show that S2
4 is planar, but S3

4 is not.

4.7. Show that κ (Sn
p ) = p − 1 for any p,n ∈ N.

4.8. Show that for any p,n ∈ N, α (Sn
p ) = pn−1. (The case p = 3 was first observed

by Nurlybaev in [246, Teorema 3].)



Chapter 5

The Tower of Hanoi with More

Pegs

In Chapter 2 we have described the fundamental object of the book—the classical
TH with three pegs. We have revealed its secrets and hopefully convinced the
reader that it contains exciting problems with not too difficult solutions. Now, a
well-known mathematical metatheorem asserts that it is easy to generalize. In this
chapter we are going to study the most natural and obvious generalization of the
TH with three pegs, namely the TH with more than three pegs. The main message
of the chapter is that in this particular case the abovementioned metatheorem is
as wrong as it can possibly be. In order to avoid confusion with the introduction of
a second parameter besides the number n of discs, namely the number p of pegs,
we will focus on p = 4 in the first part of this chapter. Later we will extend our
discussion to the general case.

5.1 The Reve’s Puzzle and the Frame-Stewart Conjecture

As already said in the introduction, the first explicit extension of the classical
puzzle to four pegs was given back in 1908 by Dudeney. It is now time to take a
closer look at this puzzle, known as The Reve’s puzzle.

The terms regular state and perfect state will have the same meaning as in
Chapter 2. The discs are labeled from 1 to n in increasing order of diameter as
before, and a regular state is denoted by s = sn . . . s1 where now the position sd
of disc d ∈ [n] is an element of Q = {0,1,2,3} (Q for quaternary), the pegs being
called 0,1,2,3. We concentrate on the classical problem P0 to get from a perfect
state to another perfect state, from peg 0 to peg 2, say, as before. Then peg 3 is
the extra peg, the Devil’s peg. It is obvious that we do not need more moves than
with three pegs: just ignore the Devil. However, it is also immediately clear that,
for n > 2, we need strictly fewer moves than for three pegs: move disc 1 to peg 3,

A. M. Hinz et al., The Tower of Hanoi – Myths and Maths,
DOI: 10.1007/978-3-0348-0237-6_6, � Springer Basel 2013
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discs 2 to n to peg 2 avoiding peg 3 and finally disc 1 to peg 2. This will take
1 + (2n−1 − 1) + 1 = 2n−1 + 1 < 2n − 1 moves altogether. But why not place a whole
subtower of, say, m smallest discs on the Devil’s peg, then transfer discs m + 1 to
n to the goal, avoiding peg 3, and bring the smaller discs to the goal thereafter?
This would take 2f(m) + 2n−m − 1 moves, if we already know how to transfer m

discs using all four pegs in f(m) moves. We then can still optimize with respect
to the parameter m and define the so-called Frame-Stewart numbers recursively:

Definition 5.1. ∀n ∈ N0 ∶ FSn
3 = 2n − 1.

FS0
4 = 0; ∀n ∈ N ∶ FSn

4 =min{2FSm
4 + FSn−m

3 ∣ m ∈ [n]0}.
Obviously (put m = 0), FSn

4 ≤ FSn
3 , with FSn

4 = FSn
3 , if and only if n ≤ 2, and

FS3
4 = 5 < 7 = FS3

3 with m chosen to be 1.
The name of these numbers derives from the solutions given by Frame [103]

and Stewart [303] to a problem posed by the latter [302], namely to find an optimal
solution for the general p-peg case.

In fact, Frame’s and Stewart’s solutions formally differ from each other. While
Stewart’s approach leads to the above Definition 5.1, Frame introduced a recursive
solution based on the idea of looking at the halfway situation, i.e. the distribution
of n discs just before the (only) move of the largest disc n+1. We will analyze this
approach later for any number of pegs. For up to four pegs it gives the following
sequences (Fn

3 )n∈N0
and (Fn

4 )n∈N0
:

Definition 5.2. ∀n ∈ N0 ∶ Fn
3 = 2n − 1.

F 0
4 = 0; ∀n ∈ N0 ∶ Fn

4 =min{Fm
4 +Fn−m

3 ∣ m ∈ [n + 1]0, 2m ≥ n}, Fn+1
4 = 2Fn

4 + 1 .
The numbers F

n

4 characterize the halfway solution and will be called Frame
numbers. On the other hand, there is no need to distinguish the sequences F and
FS. F3 = FS3 is obvious. Noting that

∀n ∈ N ∶ Fn
4 =min{2Fm

4 +Fn−m
3 ∣ m ∈ [n]0, 2m ≥ n − 1} ,

we immediately see that FSn
4 ≤ Fn

4 . To get rid of the restriction on m in Frame’s
halfway approach, namely that the number m of smaller discs transferred using 4

pegs is not smaller than the number n −m of larger ones restricted to 3 pegs, we
observe the following: from Definition 5.1 we get (put n = k + 1 and m = k):

FSk+1
4 ≤ 2FSk

4 +FS1

3 ≤ FSk
4 + FSk

3 + FS1

3 = FSk
4 + 2k,

such that
∀k ∈ N0 ∶ FSk+1

4 −FSk
4 ≤ 2k.

Summing this from m to ` − 1 ≥m, we obtain

FS`
4 − FSm

4 =
`−1

∑
k=m

(FSk+1
4 − FSk

4 ) ≤
`−1

∑
k=m

2k = 2` − 2m = FS`
3 − FSm

3 ,
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whence
∀m ∈ [`]0 ∶ FS`

4 +FSm
3 ≤ FSm

4 +FS`
3 . (5.1)

We arrive at the following proposition:

Proposition 5.3. ∀n ∈ N0 ∶ Fn
4 = FSn

4 .

Proof. We proceed by induction. The case n = 0 is immediate from the definitions.
So let n ∈ N0 and assume that ∀k ∈ [n + 1]0 ∶ F k

4 = FSk
4 . Then

Fn+1
4 = 2Fn

4 + 1
= 2min{Fm

4 +Fn−m
3 ∣ m ∈ [n + 1]0, 2m ≥ n} + 1

= 2min{FSm
4 +FSn−m

3 ∣ m ∈ [n + 1]0, 2m ≥ n} + 1
= 2min{FSm

4 +FSn−m
3 ∣ m ∈ [n + 1]0} + 1

=min{2FSm
4 + FSn+1−m

3 ∣ m ∈ [n + 1]0}
= FSn+1

4 ;

here we have made use of the induction assumption and (5.1), where we put
` = n −m to get

∀m ∈ [n + 1]0, 2m < n ∶ FSn−m
4 + FSm

3 ≤ FSm
4 +FSn−m

3 ,

such that for these cases we can just switch m and n −m. ◻
On the other hand, O. Dunkel, the editor of the problem section of the

American Mathematical Monthly, immediately pointed out in [80] that a proof of
minimality was lacking for the presumed minimal solutions of Frame and Stewart.
Writing d(s, t) again for the minimal number of moves to get from state s to state
t in Qn, the following has been open since 1941:

Frame-Stewart Conjecture (FSC). ∀n ∈ N0 ∶ d(0n,2n) = FSn
4 .

The conjecture can easily be verified for the first few cases by hand. It has
been tested by R. E. Korf and A. Felner in [185] to be true up to and including
n = 30 using a refined search algorithm on a computer, see also [184] for more
details. We will discuss these numerical experiments in Section 5.3.

A recursive algorithm realizing the solutions given by Frame and Stewart
(cf. also [78, p. 131f]) can be based on partition numbers for an n-disc tower, that
is on numbers mn for which the minimum in Definition 5.1 is achieved. Note that
for given n ∈ N partition numbers need not be unique: m4 = 1 and m4 = 2 lead to
essentially different solutions both of length FS4

4 = 9; see Figure 5.1. Of course,
solutions which differ by an exchange of the roles of the two auxiliary pegs 1 and
3 only are not considered essentially different.

In preparation for the recursive Frame-Stewart algorithm we need a revised
version of Algorithm 4, namely Algorithm 15. This algorithm will transfer a
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Figure 5.1: Two optimal solutions for 4 discs

subtower consisting of n consecutive discs starting with d from peg i to peg j

using the auxiliary peg k in the optimal number of 2n − 1 moves, where now the
three different pegs are labeled with arbitrary natural numbers.

Algorithm 15 Revised recursive algorithm for 3 pegs
Procedure FS3(n, d, i, j, k)
Parameter n: number of discs to be transferred {n ∈ N0}
Parameter d: smallest disc to be transferred {d ∈ N}
Parameter i: source peg {i ∈ N0}
Parameter j: goal peg {j ∈ N0, j ≠ i}
Parameter k: auxiliary peg {k ∈ N0, i ≠ k ≠ j}

if n ≠ 0 then
FS3(n − 1, d, i, k, j) {transfers n − 1 smallest discs to auxiliary peg}
move disc d + n − 1 from i to j {moves largest disc to goal peg}
FS3(n − 1, d, k, j, i) {transfers n − 1 smallest discs to goal peg}

end if
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Now Algorithm 16 will realize a solution of length FSn
4 to transfer n ∈ N0

discs from peg i to peg j via auxiliary pegs k and l as long as i, j, k, l are mutually
different.

Algorithm 16 Recursive Frame-Stewart algorithm for 4 pegs
Procedure FS4(n, i, j, k, l)
Parameter n: number of discs {n ∈ N0}
Parameter i: source peg {i ∈ N0}
Parameter j: goal peg {j ∈ N0 ∖ {i}}
Parameter k: the Devil’s peg {k ∈ N0 ∖ {i, j}}
Parameter l: the other auxiliary peg {l ∈ N0 ∖ {i, j, k}}

if n ≠ 0 then
m← partition number for n {partition number assigned}
FS4(m, i, k, j, l)
FS3(n −m,m + 1, i, j, l)
FS4(m,k, j, i, l)

end if

For the example with n = 10 discs, see Figure 5.2, where the number of individual
disc moves is shown above the arrows.

17

15

17

6

4

{
{

Figure 5.2: Recursive solution for 10 discs on 4 pegs. Only subtower moves are
shown.

It is easy to derive an algorithm assigning a(ll) partition number(s) and the
value of FSn

4 to a given n directly from Definition 5.1 (see Table 5.1).
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ν ∆ν x n FSn
3 m FSn

4 FSn
4 −FSn−1

4 FS
n

4

0 0 0 0 0 0 0 0
1 1 0 1 1 0 1 1 1
1 1 1 2 3 1,0 3 2 2
2 3 0 3 7 1 5 2 4
2 3 1 4 15 2,1 9 4 6
2 3 2 5 31 3,2 13 4 8
3 6 0 6 63 3 17 4 12
3 6 1 7 127 4,3 25 8 16
3 6 2 8 255 5,4 33 8 20
3 6 3 9 511 6,5 41 8 24
4 10 0 10 1023 6 49 8 32
4 10 1 11 2047 7,6 65 16 40

Table 5.1: Frame-Stewart numbers (∆ν triangular number, x excess, m partition
number(s))

5.2 Frame-Stewart Numbers

To facilitate their construction, it would be desirable to obtain a closed formula
for Frame-Stewart numbers and their partitions (cf. [273], [140, Theorem 1], and
[222, Theorem 3.2]). As had already been observed by Dudeney, a look at the first
few cases of n in Table 5.1 reveals the special status of the sequence (∆ν)ν∈N0

of
triangular numbers; recall from Chapter 0 that each ∆ν is given by

∆ν = ν(ν + 1)
2

and that every n ∈ N0 can uniquely be written as n = ∆ν + x, with index

ν = ⌊
√
8n + 1 − 1

2
⌋ ∈ N0 and excess x ∈ [ν + 1]0. We arrive at the following com-

prehensive result.

Theorem 5.4. For every ν ∈ N0 and x ∈ [ν + 1]0:
FS∆ν+x

4
= (ν − 1 + x)2ν + 1 .

Moreover, for ν ∈ N, ∆ν−1 + x is a partition number for ∆ν + x. It is the only one
if x = 0, and there is precisely one further partition number, namely ∆ν−1 + x − 1,
otherwise.

Proof. We will proceed by induction on n = ∆ν + x. For n = 0 we have ν = 0 = x
and FS0

4 = 0 = (0−1+0)20+1. Similarly, the case ν = 1 with excesses x = 0,1, that
is n = 1,2, can easily be checked (cf. Table 5.1). So let n > 2 and assume that the
theorem is true for all m = ∆µ + y < n. We have to show that the function f on



5.2. Frame-Stewart Numbers 171

[n]0 given by f(m) = 2FSm
4 +FSn−m

3 attains its minimum at mn ∶=∆ν−1+x, that
it has no other minimum point for x = 0 and precisely one more, namely mn − 1,
otherwise, and that f(mn) = (ν − 1 + x)2ν + 1; cf. Figure 5.3.

m

f(m)

0 1 mn − 1 mn n − 1 n

∆ν−1 + x − 1 ∆ν−1 + x ∆ν + x − 1 ∆ν + x

2n − 1

2n−1 + 1

(ν − 2 + x)2ν+1 + 3
(2ν − 3)2ν + 3

(ν − 1 + x)2ν + 1

x = 0
x ≠ 0

Figure 5.3: Induction step for Theorem 5.4

We begin with the latter. By induction assumption we have, making use of
n −mn =∆ν −∆ν−1 = ν,

f(mn) = f(∆ν−1 + x) = 2 ((ν − 1 − 1 + x)2ν−1 + 1) + 2ν − 1 = (ν − 1 + x)2ν + 1 ,
for x ∈ [ν]0 and

f(mn) = f(∆ν) = 2 ((ν − 1)2ν + 1) + 2ν − 1 = (2ν − 1)2ν + 1 = (ν − 1 + x)2ν + 1 ,
if x = ν.

In order to locate the point(s) of minimum of f , we define the function g on
[n − 1] by g(m) = f(m) − f(m − 1); it then suffices to show that

g(m){ < 0, m ≤mn,> 0, m >mn,

if x = 0 (red case in Figure 5.3) and

g(m)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

< 0, m <mn,= 0, m =mn,

> 0, m >mn,

if x ≠ 0 (green case in Figure 5.3). This can be reduced to a bookkeeping task
observing that (recall that m =∆µ + y),

g(m) = 2 (FSm
4 − FSm−1

4 ) − 2n−m = 2µ+(y≠0) − 2n−m ,
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such that only the exponents have to be compared in the different cases above.
This is left to the reader as Exercise 5.1. ◻

Motivated by the definition of Frame-Stewart numbers, A. Matsuura [230]
studied recurrence relations of the following form. Let p, q ∈ N be given, then set
T (0, p, q) = 0 and for n ∈ N let

T (n, p, q) =min{pT (m,p, q) + qFSn−m
3 ∣ m ∈ [n]0} .

In this notation, FSn
4 = T (n,2,1).

It is not difficult to see (by induction on n) that T (n, p, q) = qT (n, p,1). To
present the main result of Matsuura, the following sequences are crucial. Let s(1)

denote the constant sequence of 1s on N (cf. [296, A000012]) and for an integer
` ≥ 2, let s(`) = (s(`)i )i∈N be the non-decreasing sequence of numbers of the form
2j`k, j, k ∈ N0. For instance,

s(2) = (1,2,2,4,4,4,8,8,8,8,16,16,16,16,16,32, . . .)
and

s(3) = (1,2,3,4,6,8,9,12,16,18,24,27,32,36,48,54, . . .) .
The numbers 2j3k are known as the 3-smooth numbers and the sequence s(3) as
the 3-smooth sequence. We will meet them again in Chapter 8 where the numbers
T (n,3,2) will find an attractive interpretation.

Theorem 5.5. (Matsuura [230, Corollary 2.1]) For any integers p, q ∈ N and every
n ∈ N0,

T (n, p, q) = q n

∑
i=1

s
(p)
i .

Corollary 5.6. For any n ∈ N0,

FSn
4 =

n

∑
i=1

s
(2)
i .

Theorem 5.5 was further generalized by J. Chappelon and Matsuura in [54].

An iterative algorithm for the Frame-Stewart solution can be obtained from
the following interesting observation (cf. [136, p. 30f]). We divide the n-tower into
N subtowers of consecutive discs and regard each subtower as a superdisc D ∈ [N]
containing nD individual discs somehow glued together. The superdiscs then move
from peg 0 to peg 2 using only peg 1 as an auxiliary peg as in the classical 3-peg
version. The moves of these superdiscs in turn are viewed as transfers of towers with
relabeled discs, these transfers being legal by using the Devil’s peg 3 which is empty
before each move of a superdisc. See Figure 5.4 for the example of n = 10 discs
with 4 subtowers=superdiscs of size 1,2,3,4, respectively; the number of individual
disc moves during each transfer of a superdisc is given on the arrows. (Note that
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the sequence of moves is essentially the same as for the recursive Algorithm 16
in Figure 5.2, just the roles of pegs 1 and 3 have been switched depending on
the different parts the Devil’s peg plays in the two algorithms. Note also that the
superdiscs consistently follow the moves of the solution of the TH with four discs
presented in Figure 2.2.)

3

1

7

1

3

1

15

1

3

1

7

1

3

1

1
}

}

}

}

1
2

3

4

Figure 5.4: Iterative solution for 10 discs on 4 pegs. Only subtower moves are
shown.

With the notation dD =
D

∑
δ=1

nδ we see that superdisc D contains the discs

from dD−1 + 1 to dD, and we arrive at Algorithm 17 which is designed to transfer
n discs from peg 0 to peg 2 making use of auxiliary pegs 1 and 3 in FSn

4 moves.
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Algorithm 17 Iterative Frame-Stewart algorithm for 4 pegs
Procedure FS4i(n)
Parameter n = n1 +⋯+ nN : number of discs {n ∈ N0}

d0 = 0
for δ = 1 to n

dδ = dδ−1 + nδ

end for
for l = 1 to 2N − 1 {moves of superdiscs}
p0m(N,0,2, l), D ← d {superdisc D to be moved from il to jl in move l}
FS3(nD, dD−1 + 1, il, jl,3) {transfer of superdisc in move l}

end for

According to Proposition 2.4, Algorithm 17 needs

N

∑
D=1

2N−DFSnD

3
= N−1

∑
k=0

2kFS
nN−k

3
= N−1

∑
k=0

2kFS
dN−k−dN−k−1

3

moves, and it only remains to choose a partition n = n1 +⋯+nN in Algorithm 17
such that this number of moves is equal to FSn

4 . But this is the case if and only
if dN−k−1 is a partition number for dN−k, as an N -fold iteration of the defining
formula for FSn

4 shows. If for n as in Theorem 5.4 we always choose the smallest
partition number, we get N = ν and nD = D + (D > ν − x); cf. [221]. Note that
although, in contrast to the other superdiscs, D = 1 has 4 pegs to move on, this
is not a real advantage, because it contains at most 2 discs; cf. also Table 5.1 and
Figure 5.1.

Remark 5.7. Instead of the recursive Algorithm 15 we could have used any other
algorithm for the solution of the classical 3-peg problem, provided such an algorithm
is adapted to the range of discs to be moved. In that way, Algorithm 17 can be
modified to a purely non-recursive one.

Every disc moves a power of 2 times in the Frame-Stewart algorithms. More-
over, the largest disc moves exactly once; this is obvious for the recursive algorithm
and follows for the iterative one from the fact that superdisc N , which contains
disc n, moves exactly once using three pegs only. (Recall from Proposition 2.2 that
in the optimal solution for the classical task for three pegs, the largest disc moves
exactly once.) So for n ∈ N0, the numbers

FS
n

4 ∶= 1

2
(FS1+n

4 − 1)
(cf. Table 5.1) give the number of moves made by the algorithm to distribute n

discs from peg 0 to two other pegs 1 and 3, say (to allow disc n + 1 to move from
0 to 2 in one step). This is the original approach taken by Frame and according
to Definition 5.2 and Proposition 5.3 we know that FS4 = F 4, the sequence of
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Frame numbers. In fact, in order to prove the Frame-Stewart conjecture it would
suffice to show that this procedure is optimal, because we can prove the following
(cf. [38, p. 119]):

Proposition 5.8. In an optimal solution for The Reve’s puzzle, the largest disc
moves exactly once.

Proof. Let µn be the number of moves necessary and sufficient to move n ∈ N0

discs from one peg to two other ones. Then an (n + 1)-tower can be transferred
from one peg to another one in at most 2µn + 1 moves.

Any solution of this problem needs at least µn moves before the first move
of disc n + 1 and at least µn moves after the last one. Therefore, it would need
at least 2µn + 2 moves if disc n + 1 were to move more than once, such that this
cannot be optimal. ◻

By virtue of Theorem 5.4, we get

Corollary 5.9. ∀ν ∈ N0 ∀x ∈ [ν + 1]0 ∶ FS
∆ν+x

4 = (ν + x)2ν−1.
An equivalent formulation of the Frame-Stewart conjecture is therefore:

Frame-Stewart Conjecture*. The task to move n =∆ν+x discs, ν ∈ N0, x ∈ [ν+1]0,
from a single peg to two others can not be achieved in less than (ν +x)2ν−1 moves.

It is this form of the Frame-Stewart conjecture that Korf and Felner checked
up to n = 29 to arrive at the result for n = 30 mentioned in Section 5.1 in connection
with the original FSC.

The FSC* can be proved without recourse to numerical computations for
small numbers of discs only; cf. Exercise 5.2. So where is the problem for a proof
of the general case? Well, in addition to the assumption, proved to be justified in
Proposition 5.8, that the largest disc n + 1 moves directly from peg 0 to peg 2,
Frame’s approach uses no less than three other assumptions! Realizing that min-
imal solutions might not be unique, Frame coined the term most economical for
any solution requiring the least numbers of moves. We now put Frame’s original
words from [103, p. 216] into frames. First, he writes for the halfway situation of
his proposed most economical solution about the n smaller discs (which he calls
“washers”) that1

. . . we may assume that the n − m largest of these
washers are on the first peg . . . and the m smallest
ones on the last.

This amounts to the assumption that among the optimal solutions, there is always
what we will call a subtower solution, i.e. halfway through the solution the two

1The quotes in frames are original except for an adaptation to our notation.
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auxiliary pegs each contain only consecutive discs. There are optimal non-subtower
solutions, but computational evidence suggests that they are restricted to n = 3

(e.g., placing discs 3 and 1 on one and disc 2 on the other auxiliary peg in altogether
4 moves) and n = 4, but in each of these cases there are also subtower solutions.
Nevertheless, Frame’s first assumption has not been proved nor refuted yet. One
has to be careful, however: there are examples for non-optimal partitions of the
n-tower, where a non-subtower solution may be strictly shorter than a subtower
solution; see Figure 5.5, where n = 8 discs are divided into two sets of 4 discs
each. After 21 moves, a halfway situation is reached where disc n + 1 = 9 could
move. Note that a subtower solution for the partition number 4 would take 24

moves (9 to transfer the 4 smallest discs using 4 pegs, 15 for the next 4 discs using
3 pegs). This can not be an optimal partition number though, as can be seen
from the penultimale state in Figure 5.5 which has partition number 5 and can be
reached in 20 moves; cf. also Table 5.1. Note further that the partition numbers in
that table refer to subtower solutions; optimal partition numbers for non-subtower
solutions could, in principle, be different.

0 13

20 21

Figure 5.5: Four stages of a non-subtower solution; states after 0, 13, 20, and 21
moves, respectively

Although the example shows that it is not feasible to convert a non-subtower
solution into a subtower solution of the same, or even smaller length in general,
Frame emphasizes his subtower assumption by saying that

. . . if the smallest washer is to cover m−1 others at this
stage, it is a most economical method to have these be
the smallest washers, so that these in turn do not block
other pegs.
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Frame continues with another assumption, namely

It is also a most economical method to have the larger
pile contain the smaller washers, since the latter have
access to more pegs at the time of their transfer.

We have seen in Proposition 5.3 that this premise, namely m ≥ n −m, is no real
restriction, provided we understand the previous assumption to comprise the last
and probably most restrictive assumption of Frame, namely that the subtowers
may be moved one after the other, the smaller m discs using 4 pegs, the others
only the 3 remaining after disc 1 has reached its terminal position on the Devil’s
peg. This is not said explicitly, but only, in reversed order, for the second part of
the solution when following the halfway situation

. . . we move the largest washer to its destination, then
move the n − m next largest washers onto it using
one auxiliary peg, . . . and finally move the m small-
est washers using two auxiliary pegs.

So there are two unproven assumptions in Frame’s solution, and they are also
implicit in Stewart’s approach, namely,

1. Among the optimal solutions for the halfway problem there is always a
subtower solution.

2. An optimal subtower solution can be obtained by first transferring the
subtower containing the smaller discs using four pegs and then moving the
other subtower on three pegs.

This was precisely Dunkel’s objection in [80], who added

It would be desirable to have a brief and rigorous proof of these lemmas.

This wish has not been fulfilled until today! Dunkel pointed out that it would be
sufficient to prove the following:

If the first m washers from the top of the initial peg
are placed on a single auxiliary peg, say peg 3; the next
n −m on peg 1; and . . . the largest washer is placed
with one move on the final peg 2 where it is alone; then,
for a suitable value of m, this plan for the removal of
all the washers from the initial peg requires as small a
number of moves as any other.
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This angle to look at the Frame-Stewart conjecture can be pronounced in a more
concise fashion by starting from an infinite tower of discs d ∈ N on peg 0. Then

Frame-Stewart Conjecture** (Dunkel’s Lemma). After (ν + x)2ν−1 moves, ν ∈
N0, x ∈ [ν + 1]0, at most ∆ν + x discs have left peg 0.

In view of this approach it would be advisable to consider problems of type
P1 also for the four-peg version of the TH. The argument in the proof of Propo-
sition 5.8 shows that the largest disc moves only once in this case too.

An interesting observation about Frame numbers is that they contain a sub-
sequence consisting of powers of 2. The first few instances in Table 5.1 are at
n = 1,2,3,5,7,10. To obtain a complete listing, we need a little lemma.

Lemma 5.10. ∀m ∈ N0 ∃1 µ ∈ N0, ρ ∈ [2µ + 1]0 ∶ m = µ + 2µ − 1 + ρ .
The proof follows easily from the fact that the sequence on N0, given by

δµ = µ + 2µ − 1 (A052944 in [296]), satisfies the recurrence

δ0 = 0, δµ+1 = δµ + 2µ + 1,
and is therefore obviously strictly monotone increasing, the ρ then covering all
natural numbers in between.

We now define the sequence a on N0 by

am =∆2µ−1+ρ + 2µ − ρ + 1 − 0ρ,
where m is represented according to Lemma 5.10. (We remind the reader that
0k = (k = 0) by convention.) This sequence fulfills the recurrence

a0 = 1, ∀m ∈ N0 ∶ am+1 = am + 2µ − 1 + ρ + 0ρ.
We now get the following remarkable result.

Proposition 5.11. ∀m ∈ N0 ∶ FS
am

4 = 2m.

Proof. In order to make use of Corollary 5.9, we have to represent am as ∆ν + x
with x ∈ [ν + 1]0 as before. If ρ = 0, then ν = 2µ and x = 0, such that

FS
am

4 = FS
∆2µ

4
= 2µ22µ−1 = 2m.

For ρ ≠ 0, we have ν = 2µ − 1 + ρ and x = 2µ − ρ + 1, such that

FS
am

4 = FS
∆2µ−1+ρ+2

µ−ρ+1
4

= ((2µ−1+ρ)+(2µ−ρ+1))2(2µ−1+ρ)−1 = 2µ+2µ−1+ρ = 2m.

◻
Remark 5.12. Since FS

n

4 is strictly increasing and the statement in Proposi-

tion 5.11 is exhaustive in m, the sequence a covers all n for which FS
n

4 is a
power of 2.
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5.3 Numerical Evidence for The Reve’s Puzzle

Being unable to prove or disprove the Frame-Stewart Conjecture (FSC), one is
tempted to try it with the aid of a computer. A lot of work has indeed been
done in this direction. Along the way, computations revealed some completely
unexpected facts about The Reve’s puzzle, thus giving further evidence for its
intrinsic hardness.

The first significant computer experiment was published in 1999 by J.-P. Bode
and Hinz [38] who confirmed the FSC for up to and including 17 discs. They
employed a breadth-first search (BFS). Recall from the solution to Exercise 0.7
that in an ordinary breadth-first search algorithm the root vertex is first put into
level 0, all its neighbors into level 1, then all unvisited neighbors of vertices in level
1 are placed into level 2, and so forth. A vertex is marked as visited immediately
after it is put into its level to prevent repeated visits. This procedure ends when all
vertices (of the component) have been included into the resulting tree structure.
In our case, it suffices to store just three levels at a time and to stop as soon as
the goal, namely one of the other perfect states (or rather a half-way state), has
been reached. The level number when this happens is just the distance between
root and goal (one half of the distance minus 1). Another reduction takes into
account the symmetries of the problem by limiting the set of vertices on a level to
non-equivalent representatives.

This method of a frontier search combined with a delayed duplicate detection
(DDD) was also employed by Korf [183] who in 2004 extended the previous result
by confirming the conjecture for up to and including 24 discs. This was topped
by S. Strohhäcker [319] to 25 in 2005. Finally, as already mentioned, in 2007 Korf
and Felner demonstrated the truth of the FSC for up to and including 30 discs.
They employed heuristics based on a complete search for the 22-disc problem. The
computation for 30 discs took over 17 days to run and required a maximum of 398
gigabytes of disk2 storage. The limiting resource was CPU time. The computation
was also executed to verify FSC for 31 discs. It ran more than three months and
used two terabytes of disk storage. Unfortunately, an unrecoverable disk error
occurred at depth 419. An analysis of this error showed that there is a one in
191 million probability that the confirming 31-disc result is incorrect.

The tree built up from the perfect state is, of course, an analogue to the
tree with vertex set T n and root 0n we introduced for the case of three pegs in
Section 2.3; we just have to replace T = [3]0 by Q = [4]0 and to represent states by
elements in Qn as before. The resulting tree for four pegs is a subgraph of what
we will call Hn

4 , namely the Hanoi graph with vertex set Qn and where edges refer

2It was Korf in [184, footnote 2] who suggested to distinguish the spellings of a magnetic
disk and a TH disc.
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to legal moves of discs. More formally (cf. (2.9)),

V (Hn
4 ) = Qn,

E(Hn
4 ) = {{sis, sjs}∣ i, j ∈ Q, i ≠ j, d ∈ [n], s ∈ Qn−d, s ∈ (Q ∖ {i, j})d−1} .

For an element of E(Hn
4 ), disc d moves from peg i to peg j with the d− 1 smaller

discs not lying on either of these pegs and the n − d larger discs in arbitrary
position. Just like before, the graphs Hn

4 can be constructed recursively as can be
seen in Figure 5.6.
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Figure 5.6: Hanoi graphs H0
4 , H1

4 , and H2
4

Formally, the recursive definition of the edge sets is (cf. Equation (2.10))

E(H0

4) = ∅,
∀n ∈ N0 ∶ E(H1+n

4 ) = {{ir, is}∣ i ∈ Q, {r, s} ∈ E(Hn
4 )}

∪ {{is, js}∣ i, j ∈ Q, i ≠ j, s ∈ (Q ∖ {i, j})n} . (5.2)

As before, connectivity is obvious from (5.2), and we will again denote the
distance between two vertices s, t ∈ Qn by d(s, t). In contrast to all Sierpiński
graphs, two subgraphs iHn

4 and jHn
4 of H1+n

4 , n ∈ N, are joined by more than
one edge, namely by 2n edges. This fact makes it easier to find paths between two
vertices, but much harder to find a shortest one. Unlike the invariant for Sierpiński
graphs from (4.11) in Corollary 4.6, the sum of distances from some state s to all
perfect states is not a constant anymore: in H2

4 this sum is 9 for perfect states,
but 8 for all other vertices, as can easily be seen from Figure 5.6.
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In Figure 5.7 we try to give an impression of the distance distribution (cf. [46,
Section 9.3]) on Hanoi graphs as compared with Sierpiński graphs. In the figure,
the distance matrices are shown for p = 4 and n = 5 with the vertices arranged in
lexicographic order. The distance 0 is represented by a black square, the distance
equal to the diameter by a white box with the intermediate distances following a
corresponding gray scale. Such representations are known as heat maps. We can
deduce the higher complexity of the Hanoi case.

Figure 5.7: Heat maps for distances in S5
4 (top left), H5

4 (bottom left) and enlarged
submatrices of pairs of vertices (0Q4,3Q4)

Along with his numerical attempts to verify the FSC, Korf [183] computed
the eccentricities of perfect states in Hn

4 for n ≤ 20, while Korf and Felner [185]
extended this to n = 22; see also [184]. The computation for 22 discs took 9 days and
18 hours to run. The computer had dual two gigahertz processors, two gigabytes of
internal memory, and the problem required over 2.2 terabytes of external storage.
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The results are collected in Table 5.2 where ex stands for the excess function
defined by ex(n) = ε(0n) − d(0n,3n).

n 1 2 3 4 5 6 7 8 9 10 11
ε(0n) 1 3 5 9 13 17 25 33 41 49 65
ex(n) 0 0 0 0 0 0 0 0 0 0 0

n 12 13 14 15 16 17 18 19 20 21 22
ε(0n) 81 97 113 130 161 193 225 257 294 341 394
ex(n) 0 0 0 1 0 0 0 0 5 20 9

Table 5.2: Eccentricities of perfect states and their excess in Hn
4

Table 5.2 reveals a very surprising anomaly: for n = 15, 20, 21, and 22, there
exist regular states s ∈ Qn such that d(0n, s) > d(0n,3n). We call this feature of
Hn

4 the Korf phenomenon. It is first of all amazing that there are such integers n,
and, moreover, that the first one occurs as late as n = 15, and that there is a gap
before n = 20. No explanation for this surprising phenomenon is known, but Korf
and Felner proposed:

Conjecture 5.13. For any n ≥ 20, ex(n) > 0.
Note that the eccentricity of a perfect state of Hn

4 is a lower bound for
the diameter of Hn

4 . Hence Conjecture 5.13 could be weakened by asserting that
EX(n) > 0 holds for any n ≥ 20, where the function EX is defined by EX(n) =
diam(Hn

4 ) − d(0n,3n), n ∈ N. In the examples which have been calculated, the
excess function ex is not monotonic. This is a bit disturbing. Since we have no
reason to believe that EX shows a similar weird behavior, we are inclined to
propose:

Conjecture 5.14. The function EX is (eventually strictly) monotone increasing.

So far we know that EX(n) = 0 for n ≤ 13 [232]. Moreover, EX(n) ≥ ex(n) >
0 for n = 15,20,21,22. If Conjecture 5.14 proves to be true, this together with
the fact that ex is not monotonic will show that perfect states are not special
anymore. On the other hand, no example is known for EX(n) > ex(n), i.e. perfect
states not lying in the periphery, which would be necessary, at least for some n, for
Conjecture 5.14 to hold. This means that in order to decide about this question,
one has to look at tasks of type P2. Also in order to attempt a decision on the
FSC, it could be necessary to consider tasks of type P1 or even type P2.

In Table 5.3 we have collected computational results of Strohhäcker [319,
Table 6] and M. Meier [232, p. 29–31] on the eccentricity of the states of Hn

4 ,
n ∈ [8].
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n

rad(Hn
4 ), rad(Hn

4 ) + 1, . . . ,diam(Hn
4 ) diam − rad + 1

number of states with given eccentricity ∣Qn∣ = 4n
number of non-equivalent states with given eccentricity ∣Qn/ ≈ ∣

1

1 1
4 4
1 1

2

3 1
16 16
2 2

3

4 5 2
24 40 64
1 4 5

4

7 8 9 3
144 96 16 256
6 7 2 15

5

10 11 12 13 4
528 360 120 16 1024
22 18 9 2 51

6

13 14 15 16 17 5
168 1776 1644 492 16 4096
7 74 74 30 2 187

7

18 19 20 21 22 23 24 25 8
624 3840 6600 3300 1740 216 48 16 16384
26 160 275 148 89 12 3 2 715

8

24 25 26 27 28 29 30 31 32 33 10
3024 12648 19464 16968 9312 3120 720 216 48 16 65536
126 527 811 716 407 148 43 12 3 2 2795

Table 5.3: Eccentricities in Hn
4

For instance, rad(H6
4) = 13, diam(H6

4) = 17, and there are 1776 states in H6
4 with

eccentricity 14. Moreover, among these there are 74 pairwise non-equivalent states
if we consider two states to be equivalent if one state emanates from the other by
a permutation of the pegs:

s ≈ s′ ⇔∃σ ∈ Sym(Q) ∀d ∈ [n] ∶ s′d = σ(sd) .
We will address the problem of symmetries of Hn

4 and how to compute the number

of equivalence classes, which is ∣[Qn]∣ = 1

6
(4n−1 + 3 ⋅ 2n−1 + 2) (cf [296, A007581]),

and their sizes as well as identifiying representatives in Section 5.5.
Let us now look at Table 5.4, where eccentricity results for Hn

4 are summa-
rized for n ∈ [13] and where

C(G) = {u ∈ V (G) ∣ ε(u) = rad(G)}
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denotes the center of graph G and

P (G) = {u ∈ V (G) ∣ ε(u) = diam(G)}
is its periphery. With the exception of the last column of the table, which contains
the average eccentricity, the data in the first eight rows are already included in
Table 5.3. However, adding the next rows uncovered, for n = 10, another surprise
which we called Peripheral phenomenon.

n rad diam diam − rad + 1 ∣C ∣ ∣C/ ≈ ∣ ∣P ∣ ∣P / ≈ ∣ ε

1 1 1 1 4 1 4 1 1.0000

2 3 3 1 16 2 16 2 3.0000

3 4 5 2 24 1 40 4 4.6250

4 7 9 3 144 6 16 2 7.5000

5 10 13 4 528 22 16 2 10.6328

6 13 17 5 168 7 16 2 14.6123

7 18 25 8 624 26 16 2 20.1594

8 24 33 10 3024 126 16 2 26.4672

9 30 41 12 1416 59 16 2 33.7114

10 37 49 13 216 9 40 4 42.5358

11 47 65 19 1056 44 16 2 53.8479

12 58 81 24 888 37 16 2 66.6067

13 71 97 27 2208 92 16 2 80.7622

Table 5.4: Radius, diameter, center, periphery, and average eccentricity of Hn
4

For n = 1 and n = 2, all the states are peripheral (and central); the case n = 3
is sporadic because diam(H3

4) − rad(H3
4) = 1. After these small cases, P (Hn

4 ),
4 ≤ n ≤ 9, consists of the states of the form ijn−1, i, j ∈ Q, whence ∣P (Hn

4 )∣ = 16.
But for n = 10, our computations revealed that the states iiiji6 and jiiji6, i ≠ j,
also belong to the periphery of H10

4 . Hence ∣P (H10
4 )∣ = 40. However, P (Hn

4 ) for
11 ≤ n ≤ 13 have again only 16 elements each, so we are justified to speak about
the Peripheral phenomenon, which we still cannot explain. The calculations for
the corresponding values for n ≥ 14 have not been embarked yet.

We will report on further numerical experiments, e.g., in search for non-
subtower solutions, after the theoretical discussion of the TH with more than 4

pegs.

5.4 Even More Pegs

Recall from Section 5.1 that Frame and Stewart proposed formally different strate-
gies to solve The Reve’s puzzle. In Proposition 5.3 we proved, however, that both
strategies lead to the same number of moves—the Frame-Stewart numbers. In fact,
they proposed different approaches for any number p ≥ 4 of pegs as follows.
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In Frame’s strategy, the upper n discs of the initial perfect (n + 1)-tower are
collected into p−2 subtowers, considered as superdiscs D1,D2, . . . ,Dp−2, consisting
of n1, n2, . . . , np−2 consecutive discs, respectively, such that ∑p−2

i=1 ni = n and n1 ≥
n2 ≥ ⋯ ≥ np−2. Then D1 is transferred to an auxiliary peg using all pegs, D2 to
another auxiliary peg using p−1 pegs and so on until finally Dp−2 is transferred to
the remaining auxiliary peg using 3 pegs. Then the move of disc n + 1 to the goal
peg is made, after which the superdiscs are transferred to the goal peg in reverse
order. The strategy is schematically shown in Figure 5.8 for the case p = 5.

}
}

}

n1

n2

n3

Figure 5.8: Frame’s strategy on five pegs

This approach leads to the following numbers. Let p ≥ 3. Then set F 0
p = 0

and for any n ∈ N0 let

F
n

p =min{Fn1

p +⋯+Fnp−2

3
∣
p−2

∑
i=1

ni = n, 0 ≤ np−2 ≤ ⋯ ≤ n1} , Fn+1
p = 2Fn

p + 1 .

Note that this definition is compatible with Definition 5.2; in particular, we will
call the F

n

p Frame numbers again. The condition n1 ≥ n2 ≥ ⋯ ≥ np−2 is called the
monotonicity condition and was assumed by Frame to be self-evident. However,
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it seems natural to define numbers F̂n
p in the same way as Fn

p , except that the
monotonicity condition is not required:

ˆ
F

n

p =min{F̂n1

p +⋯ + F̂np−2

3
∣

p−2

∑
i=1

ni = n, ni ∈ N0} , F̂n+1
p = 2 ˆFn

p + 1 .

Stewart’s strategy is conceptually a bit simpler: split the starting perfect n-tower
into subtowers D and D, consisting of the m ∈ [n]0 upper discs and the n −m
lower ones, respectively. Then transfer the top m discs to an auxiliary peg using
all pegs, transfer D to the goal peg using p − 1 pegs, and complete the task by
transferring D to the goal peg. Now we are led to the following numbers FSn

p . As
already defined, FSn

3 = 2n − 1 for any n ∈ N0. Let p ≥ 4. Then FS0
p = 0 and for any

n ∈ N let:
FSn

p =min {2FSm
p + FSn−m

p−1 ∣ m ∈ [n]0} .
Again this is consistent with Definition 5.1. One might be tempted to introduce
numbers defined as FSn

p , but with the additional monotonicity condition m ≥ n−m.
However, this would lead to larger values which is not what we want to have. For
instance, the minimum of 2FSm

5 + FS9−m
4 is assumed for m = 3 and m = 4, but

not for m ≥ 5; cf. [172, p. 146].
On the other hand, we can extend the number of configurations involved

by considering all partitions into superdiscs; cf. Exercise 5.3. More precisely, let
Â0

p = 0 for every p ≥ 2 and assume the convention that Â1
2 = 1 and Ân

2 = ∞ for
n ≥ 2. (This corresponds to a TH with only two pegs, where obviously only at
most 1 disc can be moved.) Then, for p ≥ 3 and n ∈ N, set

Ân
p =min

p−1

⋃
k=2

⎧⎪⎪⎨⎪⎪⎩
2(Ân1

p +⋯+ Ânp−k

k+1 ) + Ânp−k+1

k
∣
p−k+1

∑
i=1

ni = n, ni ∈ N0, np−k+1 ≠ 0
⎫⎪⎪⎬⎪⎪⎭
.

Moreover, let An
p be defined as Ân

p with the addition that the monotonicity condi-
tion is required in all the partitions. Then the main result of Klavžar, Milutinović,
and Petr [172, Theorem 6.5] reads as follows:

Theorem 5.15. For any p ≥ 3 and every n ∈ N0,

FSn
p = Fn

p = F̂n
p = An

p = Ân
p .

The proof of this theorem is rather lengthy and technical, the interested
reader can verify it in [172]. It seems that the technical difficulties are intrinsic as
can be seen already in the proof of Proposition 5.3 which is a rather special case
of Theorem 5.15.

Therefore it comes as no surprise that the analogue of FSC (cf. p. 167) for
more than four pegs will be an even bigger challenge. We cannot resist but to
quote Knuth (see [220]), whose opinion is based on “a solid week of working [he
spent] on it pretty hard” (cf. [177, p. 321]): “I doubt if anyone will ever resolve the
conjecture; it is truly difficult.”
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Strong Frame-Stewart Conjecture (SFSC).

∀p ≥ 3 ∀n ∈ N0 ∶ d (0n, (p − 1)n) = FSn
p .

Recall from Theorem 5.4 that for p = 4, the Frame-Stewart numbers can be
written explicitly as

FS∆ν+x
4

= (ν − 1 + x)2ν + 1 ,
where ∆ν = ν(ν+1)

2
and x ∈ [ν + 1]0. Lu in [205, Theorem 3] and also Klavžar and

Milutinović in [170, Theorem 3.1] extended this formula to any number of pegs.
Setting, for q ∈ N,

∆ν,q = (ν + q − 2
q − 1 )

(with the understanding that ∆0,1 = 1), one gets the following.

Theorem 5.16. For all p ≥ 3, ν ∈ N0, and 0 ≤ x ≤∆ν+1,p−2,

FS∆ν,p−1+x
p = (Pp−3(ν) + x)2ν + (−1)p ,

where Pq is the polynomial of degree q ∈ N0 defined by

Pq(ν) = (−1)q
q

∑
i=0

(−1)i∆ν,i+1 .

Note that ∆ν,3 = ∆ν . In addition, the reader is invited to verify that The-
orem 5.16 reduces to the formula in Theorem 5.4 in the case p = 4 and that for
p = 3 it gives the number of moves of the 3-pegs problem. The case p = 5, where
∆ν,4 are the tetrahedral numbers, was considered by A. Brousseau in [45] who also

conjectured the general formula writing the polynomial as P̃q(ν) =
q

∑
i=0

(−2)i(q + ν
q − i).

The reader should prove in Exercise 5.4 that indeed P̃q = Pq.
Cull and E. F. Ecklund noticed in [63, Theorem 2] that for n ≥ p − 1 the

partition according to Stewart is unique if and only if n =∆ν,p−1 for some ν ≥ 2. The
general question of partition numbers has been addressed in [170, Theorem 2.7].

An iterative algorithm realizing FSp can be constructed from one for FSp−1

by replacing 4 and 3 in Algorithm 17 by p and p − 1, respectively and employing
the same argument as there to choose appropriate partition numbers. We arrive
at another representation for the FS numbers, namely (cf. [223, Theorem 2.2])

FSn
p =

N

∑
D=1

2N−DFSnD

p−1 , (5.3)

where again N is the number of superdiscs and nD is the number of individual
discs composing superdisc D ∈ [N]. The formula in (5.3) actually applies to p = 3
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as well, where the notions of superdiscs and discs coincide and putting FS1
2 = 1,

because on two pegs only one disc can be moved; cf. [223, Remark 2.1].

One would, of course, like to attempt a proof of the SFSC on the lines of
Frame’s and Stewart’s approaches. In fact, the argument of Proposition 5.8 carries
over to p > 4, such that the largest disc will move exactly once in an optimal
solution. As before, the problem for n + 1 discs can thus be reduced to find an
optimal half-path solution, i.e. the task to distribute n discs from a tower on one
peg onto p − 2 other pegs in a minimum number of moves. Again, the largest disc
n will only move once (and once more after the move of disc n + 1). To see this,
we first note that the proof of the boxer rule Lemma 2.26 (cf. also Lemma 4.7)
carries over verbally to p > 3 pegs, such that we have

Lemma 5.17. If on a geodesic of H1+n
p , n ∈ N0, the largest disc is moved away from

a peg, it will not return to the same peg.

On the other hand, for a P1-type task, the proof of Theorem 2.7 can not be
adapted easily to the p-pegs situation because it relies intimately on the knowledge
of the (length of a) solution for the P0 problem. We therefore have to resort to an
ingenious observation of S. Aumann [17, Lemma 5.19]:

Lemma 5.18. Let P be a geodesic in H1+n
p , p ≥ 3, n ∈ N0, containing a vertex t

associated with a state in which pegs i and j, i ≠ j, are empty, i.e. t([1 + n]) ⊂
[p]0 ∖ {i, j}. Then no edge between iHn

p and jHn
p is contained in P .

Proof. Suppose that such an edge exists in P . Then we may assume that it
corresponds to the first move on a shortest path from is to t with some s ∈
([p]0 ∖ {i, j})n. Consider the subpath from js to t and switch the roles of i and j

in it (cf. [274, p. 17]). This results in a path from is to t which is shorter by one
edge than the original one, leading to a contradiction. ◻

We can now prove the following (cf. [17, Theorem 5.20]).

Theorem 5.19. Let s, t ∈ [p]1+n0 , p ≥ 3, n ∈ N0. If either s or t is perfect, then in
an optimal solution to get from s to t, the largest disc n + 1 moves precisely once,
if sn+1 ≠ tn+1, and not at all otherwise.

Proof. We may assume that t = 01+n. If sn+1 = 0, then, by Lemma 5.17, disc n + 1
does not move in an optimal solution. Otherwise, according to Lemma 5.18, there
is no move of disc n + 1 between i and j if ∣{0, i, j}∣ = 3. The only possible moves
of n+ 1 are therefore to or from peg 0, such that by Lemma 5.17 it can only move
once, namely from sn+1 to 0. ◻

Apart from n = 0 and n = 1 (case ν = 0 of Theorem 5.16), there are, of
course, a couple of other trivial cases, where the SFSC holds, namely (ν = 1) when
2 ≤ n ≤ p− 1: to reach the half-way distribution, each of the smaller n− 1 discs has
to move at least once, so d (0n, (p − 1)n) ≥ 2(n − 1) + 1 = 2n − 1 = FSn

p . For ν = 2
in Theorem 5.16 we get:



5.4. Even More Pegs 189

Proposition 5.20. For p ≥ 3 and n ≥ p,
d (0n, (p − 1)n) ≥ 4n − 2p + 1 ;

in particular, the SFSC holds for n ≤ (p
2
).

Proof. Those among the n − 1 smaller discs which move only once to reach half-
way must then lie on the bottom of their peg, since the first move of a disc from a
perfect state always goes there. Because of availability of pegs, this is possible for
at most m ≤ p − 2 of these discs. The other n − 1 −m have to move at least twice
to half-way. We therefore have

d (0n, (p − 1)n) ≥ 1 + 2m + 4(n − 1 −m) = 4n − 3 − 2m ≥ 4n − 2p + 1 .
For p ≤ n ≤ (p

2
), this lower bound is precisely the value of FSn

p . ◻
M. Szegedy [322] used a similar approach to prove a non-trivial lower bound

on d (0n, (p − 1)n). Instead of attacking the problem directly, he suggested to con-
sider the function g defined as follows. For a regular state s, let g(s) be the
minimum number of moves needed to move each disc at least once. Then set

g(p,n) =min {g(s) ∣ s ∈ [p]n0 } . (5.4)

Since clearly d (0n, (p − 1)n) ≥ g(p,n), Szegedy suggested to bound g(p,n) from
below. In the following we describe how this can be achieved.

Consider the P0 problem on p ≥ 4 pegs with n discs and let m be an integer
such that 0 < m < n

2p
. Let S be the set of the smallest n − 2pm discs and let s be

an arbitrary regular state. By the pigeonhole principle there exists a peg, say peg
0, holding at least 2m discs among the largest 2pm discs. Let L1 be the set of the
m largest discs on peg 0 and let L2 be the set of the next m largest discs on the
same peg. The sets of discs S, L1, and L2 are pairwise disjoint. Note also that
every disc from L1 is larger than any disc from L2, and any disc from L2 is larger
than any disc from S.

Let M be a sequence of moves starting in s and moving each disc at least
once. Split M into M1 and M2, where M1 are the starting moves up to and
excluding the first move of the smallest disc from L1, whileM2 contains the first
move of that disc as well as all the remaining moves. Clearly, during the sequence
M1 each disc of L2 is moved (at least once), and during M2 each disc of L1

is moved. Suppose now that during M1, at least one of the discs from S is not
moved. Then the peg of this idle disc cannot be used for the moves of the discs
from L2. In other words, if some disc from S is not moved duringM1, only p − 1
pegs are used to move discs from L2. It follows that the sequenceM1 has at least

min{g(p,n − 2pm), g(p − 1,m)}
terms. Similarly, during M2 either all the discs from S were moved at least once
or the discs from L1 were moved using at most p − 1 pegs. Therefore,

g(p,n) ≥ 2 min{g(p,n − 2pm), g(p − 1,m)} .
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After some technical calculation for which we refer to [322], this inequality leads
to the following:

Theorem 5.21. (Szegedy [322, Theorem 1]) For any p ≥ 3,
d (0n, (p − 1)n) ≥ 2(1+o(1))Cpn

1/(p−2)

,

where

Cp = 1

2
( 12

p(p − 1))
1/(p−2)

.

Theorem 5.21 needs several comments. First, it uses the little-o notation
which in the particular case o(1) means that the term tends to 0 when n tends
to infinity. Observe also that we have developed the theorem for p ≥ 4, but it is
stated for p ≥ 3. This is justified in Exercise 5.5.

Xiao Chen and J. Shen [56] adopted Szegedy’s strategy and proved that

d (0n, (p − 1)n) ≥ 2(1+o(1))(n(p−2)!)1/(p−2) ,
in other words, they improved the constant Cp from Theorem 5.21 to (p−2)!1/(p−2).

Coming back to the Frame-Stewart approach, Theorem 5.15 implies, in par-
ticular, that Frame’s monotonicity condition constitutes no restriction. However,
we are facing the same confinements as for the case p = 4 of The Reve’s puzzle,
namely the two assumptions of a subtower solution and the sequential transfer
of these subtowers/superdiscs; cf. the discussion (starting on p. 175) of the orig-
inal statements of Frame and Dunkel, who actually formulated them referring to
the general case p ≥ 3. We will analyze these assumptions further with a look
at numerical experiments in Section 5.6. As a preparation we come back to the
representation of the TH by graphs.

5.5 Hanoi Graphs Hn
p

Obviously, the TH with four or more pegs can be modeled just like the classical
one by state graphs. Let p ∈ N, p ≥ 3; then the Hanoi graph (on p pegs) Hn

p has
all regular states as vertices, two vertices being adjacent if they are obtained from
each other by a legal move of one disc. See Figure 5.9 for a graphical representation
of H4

4 . For more illustrations of Hanoi graphs see [258].
The vertex set of Hn

p is thus

V (Hn
p ) = [p]n0 ,

and we will again denote its elements by s = sn . . . s1 with sd ∈ [p]0 signifying the
peg where disc d ∈ [n] is lying in state s ∈ V (Hn

p ). In contrast to the definition
of higher base Sierpiński graphs, the extension of the edge sets from Hn

3 to Hn
p ,
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Figure 5.9: The graph H4
4

p > 3, is not based on the mathematical structure of the graphs, but on the rules
of the TH puzzle. Formally, for any p ≥ 3 and any n ∈ N0,

E(Hn
p ) = {{sis, sjs} ∣ i, j ∈ [p]0, i ≠ j, d ∈ [n], s ∈ [p]n−d0 , s ∈ ([p]0 ∖ {i, j})d−1} .

(5.5)
Here, for each edge, d is again the moving disc, such that all smaller discs have to
be in a state s on pegs different from both i and j. Since V (Hn

p ) = [p]n0 and two
vertices of Hn

p can be adjacent only if they differ in exactly one coordinate, Hanoi
graphs Hn

p can be interpreted as spanning subgraphs of Hamming graphs, that is,
of Cartesian products of complete graphs; see [158, Section 2.2] for this point of
view to Hanoi graphs.

The edge sets of Hanoi graphs can be expressed, as done before for p = 3

(cf. (2.10)) in a recursive definition:

E(H0

p) = ∅,
∀n ∈ N0 ∶ E(H1+n

p ) = {{ir, is} ∣ i ∈ [p]0, {r, s} ∈ E(Hn
p )}

∪ {{ir, jr} ∣ i, j ∈ [p]0, i ≠ j, r ∈ ([p]0 ∖ {i, j})n} . (5.6)

The first term of (5.6) corresponds to the edges between the states in which the
largest disc is on a fixed peg i. Any edge from the second set is between two states
in which disc n + 1 is on different pegs, while the remaining discs lie on the other
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p − 2 pegs. If follows that

∥H0

p∥ = 0 , ∥H1+n
p ∥ = p∥Hn

p ∥ + (p2)∣H
n
p−2∣ = p∥Hn

p ∥ + (p2) ⋅ (p − 2)
n . (5.7)

An easy consequence is

Proposition 5.22. For p > 3 and n > 1, ∥Sn
p ∥ < ∥Hn

p ∥.
In particular,

Sn
p ≅Hn

p ⇔ p = 3 or n ≤ 1 .
Proof. Obviously, S0

p = H0
p and S1

p = H1
p , and we have already seen that Sn

3 ≅ Hn
3

for all n. Pairs of subgraphs iSn
p , i ∈ [p]0, being linked by a single edge, we have

the recurrence relation
∥S1+n

p ∥ = p∥Sn
p ∥ + (p2) ,

and ∥Sn
p ∥ < ∥Hn

p ∥ for p > 3 and n > 1 follows from (5.7). ◻
Solving the recurrence (5.7) with Lemma 2.18, we get (cf. [171, Corol-

lary 3.3]):

Proposition 5.23. For any n ∈ N0 and p ≥ 3,

∥Hn
p ∥ = p(p − 1)

4
(pn − (p − 2)n) .

Proposition 5.23 can, of course, also be proved directly by recourse to (5.5)
or even more directly as follows (cf. D. Arett and S. Dorée [14, p. 202f]). Fix two
pegs i and j. Then a move between them is legal if and only if they are not both
empty. The number of states in which both i and j are empty is (p − 2)n, hence
there are exactly pn−(p−2)n states that allow a move between pegs i and j. Since
there are (p

2
) pairs of pegs and each edge has been counted twice, namely as moves

from i to j and from j to i, the number of edges is thus 1

2
(p
2
) (pn − (p − 2)n).

Another expression for ∥Hn
p ∥ involving Stirling numbers of the second kind

is given in Exercise 5.6. A formula for ∥Hn
p ∥ cannot easily be obtained from the

Handshaking lemma because of the diversity of degrees in Hn
p . For instance, while

disc 1 can always move to p − 1 pegs, the second smallest top disc may still go to
p− 2 targets, such that for n > 1 any non-perfect vertex has degree at least 2p− 3,
which, for p > 3, is larger than p, the maximal degree of Sn

p ; this is an even sim-
pler argument for the second statement in Proposition 5.22. An extension of this
argument leads to the following result (see [14, p. 203] and [153, Proposition 1]),
where δ(G) is the minimum degree of G.

Proposition 5.24. Let p ≥ 3, n ∈ N, and let s be a vertex of Hn
p corresponding to a

regular state with k pegs occupied, where k ∈ [p]. Then the degree of s is

(p
2
) − (p − k

2
) .
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Consequently,

δ (Hn
p ) = p − 1 and ∆ (Hn

p ) = (p
2
) − (p − n

2
) ,

with the understanding that (p−n
2
) = 0 for n > p.

Proof. The divine rule allows up to k ∈ [p − 1] topmost discs to move in state s.
The smallest of these can move to p − 1 pegs, the second smallest to p − 2 and so
on. This adds up to

k

∑̀
=1

(p − `) =
p−1

∑̀
=1

(p − `) −
p−1

∑
`=k+1

(p − `) =
p−1

∑̀
=1

` −
p−k−1

∑̀
=1

` = (p
2
) − (p − k

2
).

The minimum degree is obtained for k = 1, that is, for perfect states. For the
maximum degree, if n ≥ p−1 then there are regular states with k = p−1 and hence
∆ (Hn

p ) = (p2); otherwise k can only be as large as n. ◻
Remark 5.25. If n ≥ 2, then there are more than 2 vertices of the form in−1j, i ≠ j,
which all have odd degree 2p−3. Therefore the corresponding Hanoi graphs are not
semi-eulerian.

Even if Sn
p is not isomorphic to Hn

p anymore for p > 3, we can still imbed it,
at least for any odd p. More precisely:

Proposition 5.26. For every odd p ≥ 3 and all n ∈ N0, S
n
p can be imbedded isomor-

phically into Hn
p in such a way that kn is mapped onto itself for all k ∈ [p]0.

Proof. The case n = 0 is trivial. For n ∈ N0 let ιn be the isomorphic imbedding
from Sn

p into Hn
p fulfilling ιn(kn) = kn by induction assumption. We construct

the mapping ι1+n ∶ S1+n
p → H1+n

p in the following way. For k ∈ [p]0 define the
permutation πk on [p]0 as follows:3

∀ i ∈ [p]0 ∶ πk(i) = 1

2
(k(p + 1) − i(p − 1))mod p;

it has precisely one fixed point, namely k. Then let π
(n)
k

denote the bijection on
[p]n0 with π

(n)
k
(sn . . . s1) = πk(sn) . . . πk(s1). Define

∀k ∈ [p]0 ∀s ∈ [p]n0 ∶ ι1+n(ks) = kπ(n)k
(ιn(s)) .

This obviously constitutes a bijection with

ι1+n(k1+n) = kπ(n)k
(ιn(kn)) = kπ(n)k

(kn) = k1+n.
3The reader might wonder where this definition comes from: it derives from the canonical

total coloring of the complete graph on p vertices.
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It remains to show that {ι1+n(ijn), ι1+n(jin)} ∈ E(H1+n
p ) for i, j ∈ [p]0, i ≠ j.

We have ι1+n(ijn) = iπ
(n)
i (ιn(jn)) = iπi(j)n and similarly ι1+n(jin) = jπj(i)n.

Moreover,

i ≠ πi(j) = 1

2
(ip + i − jp + j)mod p = 1

2
(jp + j − ip + i)mod p = πj(i) ≠ j ,

and so the two vertices are adjacent in Hn
p . ◻

In the case p = 3 the imbedding of Proposition 5.26 is an isomorphism, be-
cause the graphs have the same order. This isomorphism is the one represented as
an automaton in Figure 4.4.

The proof of Proposition 5.26 does not work for even p, because the permuta-
tions πk are not well defined then. This reflects the fact that Kp cannot be totally
colored with p colors for even p. In fact, Proposition 5.26 is not true for even p.
For instance, S2

4 can not be imbedded isomorphically into H2
4 : for degree reasons,

extreme vertices have to be mapped onto perfect states; but then any choice of
single connections between the subgraphs ι2(kS1

4), k ∈ [4]0, will lead to a contra-
diction (cf. the pictures of S2

4 and H2
4 in Figures A.9 and 5.6, respectively). This

kind of argument can be extended to every even p ≥ 4 and all n ≥ 2 by considering
cliques in Hn

p . In fact, the following holds (see [150, Lemma 1]):

Lemma 5.27. Every complete subgraph of Hn
p , n ∈ N, is induced by edges corre-

sponding to moves of one and the same disc. In particular, ω(Hn
p ) = p and the

only p-cliques of Hn
p are of the form sH1

p with s ∈ [p]n−10 .

Proof. Take any vertex s joined to two vertices s′ and s′′ by edges corresponding
to the moves of two different discs. Then the positions of these discs differ in s′

and s′′. Since vertices in Hn
p can only be adjacent if they differ in precisely one

coordinate, s′ and s′′ can not be adjacent. This proves the first assertion. In any
state s, the smallest disc can move to p − 1 pegs, so that s is contained in the
p-clique sn . . . s2H

1
p . On the other hand, a disc d ≠ 1 can be transferred to at most

p − 2 pegs, namely those not occupied by disc 1. ◻
Proposition 5.26 and Lemma 5.27 in combination with Theorem 4.3 lead to

(see [150, Theorem 2]):

Theorem 5.28. Let p ≥ 3, n ∈ N. Then Sn
p can be embedded isomorphically into Hn

p

if and only if p is odd or n = 1.
For details of the proof, see [150]. Recalling that Hanoi graphs can be interpreted as
spanning subgraphs of Hamming graphs, we obtain the same result for Sierpiński
graphs of odd base.

We have seen in Proposition 2.22 that the connectivity κ of the graphs Hn
3

is 2. This fact extends to all Hanoi graphs as follows.

Proposition 5.29. For any p ≥ 3 and any n ∈ N, κ (Hn
p ) = p − 1.



5.5. Hanoi Graphs Hn
p 195

Proof. By definition, κ(Kp) = p − 1, hence the assertion holds for n = 1 because
H1

p ≅ Kp. Since δ (Hn
p ) = p − 1 by Proposition 5.24, we have κ(Hn

p ) ≤ p − 1 for
all n. To show that no p − 2 vertices disconnect Hn

p , we proceed by induction on
n, the base case being already treated. If we delete p − 2 vertices from H1+n

p , at
most (p − 2)2 edges between subgraphs kHn

p , induced by vertices of the form ks

with k ∈ [p]0 and s ∈ [p]n0 , are destroyed. But every pair of these subgraphs has
(p− 2)n ≥ p− 2 connecting edges, such that at most p− 2 connections between the
subgraphs are completely lost, which leaves the whole graph still connected. ◻

Hamiltonicity also extends to all Hanoi graphs; see Exercise 5.7. This is not
the case, however, for the existence of perfect codes. While there are, of course,
perfect codes for all Hanoi graphs isomorphic to Sierpiński graphs and also for
H2

p (see Exercise 5.8), no other Hanoi graph has this property, as found out by
Q. Stierstorfer [309, Hauptsatz 4.4].

We next list several additional graph-theoretical properties of the graphs Hn
p

that have been dealt with by now.

Planarity Recall that the graphs Hn
3 are planar for any n ∈ N0. From Figure 5.6

we see that H0
4 , H1

4 , and H2
4 are planar. On the other hand, H3

4 is not planar;
see Exercise 5.9. Since this is a subgraph of every Hn

4 with n > 4, they too are
non-planar. Finally, H1

5 ≅K5 is contained in all Hn
p s for p > 4. In conclusion,

the only planar Hanoi graphs are H0
p , Hn

3 , H1
4 , and H2

4 , a result first obtained
by Hinz and Parisse [152, Theorem 2].

Not a single crossing number of non-planar Hanoi graphs for more than
one disc is known explicitly! Whereas cr(S3

4) had been found to be 12 (see
Section 4.2.2), the best upper bound for cr(H3

4) is 72 [285, Theorem 3.12]. The
corresponding drawing of R. S. Schmid is shown in Figure 5.10. Note that for
this drawing it turned out to be advantageous not to employ planar drawings
of the 4 subgraphs iH2

4 , but ones with 9 crossings each. Among the 24 edges
connecting these subgraphs, 12 have 4 crossings each and 12 contain 2; since
they were counted twice, this makes up for another 36 crossings. Nobody has
ever dared to approach the question of genera of Hanoi graphs.

Chromatic number Since Hn
p contains complete subgraphs on p vertices, χ (Hn

p ) ≥
p. On the other hand, Arett and Dorée [14, p. 206] observed that the function

c(s) = ( n

∑
d=1

sd)mod p

defines a vertex coloring of Hn
p . Indeed, if s and s′ are adjacent states, then

they differ in exactly one position and consequently c(s) /= c(s′). So χ (Hn
p ) ≥

p and we conclude that χ (Hn
p ) = p.

Chromatic index The arguments used to determine χ (Hn
p ) form a direct exten-

sion of Proposition 2.21 and its proof for the case of vertex colorings. The
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Figure 5.10: Plane drawing of H3
4 with 72 crossings

same proposition also gives the chromatic index χ′ (Hn
3 ) = 3, where the label

of the idle peg of the move associated with an edge defines an edge coloring of
Hn

3 with three colors (cf. [290, p. 97]). However, the quest for the chromatic
index χ′ (Hn

p ) for bases higher than 3 turned out to be quite intriguing.4

The intrinsic difficulty seems to be the fact that an answer appeared to be
more demanding for small n and large p than for higher values of n. Hinz
and Parisse [153] overcame all the difficulties and proved:

Theorem 5.30. For any p ≥ 3 and any n ≥ 2, χ′ (Hn
p ) =∆ (Hn

p ).
Recall (from p. 33) that by Vizing’s theorem for any graph G, χ′(G) =∆(G)
or χ′(G) =∆(G) + 1. In the respective cases G is called Class 1 and Class 2.
Since H1

p =Kp, Theorem 5.30 can thus be rephrased by saying that all Hanoi
graphs are Class 1 except the instances of H1

p with odd p.

4The quest was initiated by Stockmeyer during the Workshop on the Tower of Hanoi and

Related Problems, Maribor, Slovenia, 2005.



5.5. Hanoi Graphs Hn
p 197

Total chromatic number In the same paper [153] where the chromatic index was
settled, the total chromatic numbers are also determined:

Theorem 5.31. For any p ≥ 3 and any n ≥ 2, χ′′ (Hn
p ) =∆ (Hn

p ) + 1.
This result in particular implies that the Total coloring conjecture (see p. 33)
is true on Hanoi graphs.

We conclude the section by describing the symmetries of Hanoi graphs, a
result due to S. E. Park [255]. Recall from Theorem 2.23 that Hn

3 , n ≥ 1, has
exactly six symmetries, more precisely, Aut(Hn

3 ) ≅ Sym(T ). We gave a short proof
by applying the fact (Lemma 2.8) that a state is uniquely determined by the vector
of its distances to the extreme vertices. In Theorem 4.14 we further noticed that the
argument can be extended to all Sierpiński graphs and concluded that Aut(Sn

p ) ≅
Sym([p]0). On the other hand, the distances in Hn

p , p ≥ 4, being much less well
understood, we follow different arguments here to obtain the analogous result
for Hanoi graphs (cf. [255, Main Theorem]). We begin with a little lemma [255,
Lemma 5].

Lemma 5.32. Let n ∈ N and s ∈ [p]n0 with sn = i. Then for any j ∈ [p]0 ∖ {i},
d(s, in) < d(s, jn).
Proof. We know already from Theorem 5.19 that on a shortest path P from s to
jn, disc n moves exactly once. The corresponding edge in Hn

p is e = {ir, jr} with
r ∈ ([p]0 ∖ {i, j})n−1. Let P be the union of the path Q from s to ir, the edge e

and the path R from jr to jn. Now merge Q with the path obtained from R by
switching the values of i and j in its vertices to obtain a path from s to in which
has a length of 1 less than P . ◻
Theorem 5.33. For any p ≥ 3 and any n ∈ N, Aut(Hn

p ) ≅ Sym([p]0).
Proof. We proceed in several steps.
(i) ∀g ∈ Aut(Hn

p ) ∃1 σ ∈ Sym([p]0) ∀k ∈ [p]0 ∶ g(kn) = σ(k)n.
The existence is clear, because g preserves degrees and perfect states are the only
edges with degree p − 1. Uniqueness is also obvious.

This defines a mapping ι ∶ Aut(Hn
p ) → Sym([p]0), g ↦ σg. We will show

now that it is a group isomorphism.
(ii) The mapping ι is surjective, since for every σ ∈ Sym([p]0):

g ∶ [p]n0 → [p]n0 , sn . . . s1 ↦ σ(sn) . . . σ(s1)
is in Aut(Hn

p ) and ι(g) = σ.
(iii) ∀g ∈ Aut(H1+n

p ) ∀k ∈ [p]0 ∶ g(ks) = σg(k)gk(s) with gk ∈ Aut(Hn
p ).

Let s ∈ [p]n0 and j ∈ [p]0 ∖ {k}; then, by Lemma 5.32,

d (g(ks), σg(k)1+n) = d(ks, k1+n) < d(ks, j1+n) = d (g(ks), σg(j)1+n) ,
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which, again by Lemma 5.32, is only true if g(ks)n+1 = σg(k). Hence g ↾ k[p]n0 ∈
Aut (σg(k)Hn

p ).
(iv) ∀g ∈ Aut(Hn

p ) ∀s ∈ [p]n0 ∶ g(s) = σg(sn) . . . σg(s1) .
This is proved by induction on n. The statement is true for n = 1, because H1

p

contains only perfect states. Now let g ∈ Aut(H1+n
p ), n ∈ N. Then, by (iii) and

induction assumption, g(ks) = σg(k)σgk(sn) . . . σgk(s1), and we have to show that
σgk(j) = σg(j) for every j ∈ [p]0.

From g(kin) = σg(k)gk(in) = σg(k)σgk(i)n it follows immediately, putting
i = k, that σgk(k) = σg(k). Moreover, for i ≠ k and any i ≠ j ≠ k, we know
that the vertices σg(k)σgk(i)n and σg(j)σgj (i)n are adjacent because they are
images under g of adjacent vertices. This is possible only if σgk(i) = σgj (i), since
neighboring vertices differ in just one pit. But then, the σs being permutations,
{σgk(j), σgk(k)} = {σgj(j), σgj (k)}, whence σgk(j) = σg(j).

It follows that ι is injective.
(v) The consistency of ι with the group structures is straightforward. ◻

At this point we should mention that there is also the concept of Hanoi Tow-
ers groups, introduced by R. Grigorchuk and Šuniḱ in [118]. Roughly speaking,
the Hanoi Towers group on p pegs, denoted by H(p), is the group of p-ary tree
automorphisms generated by the transposition automorphisms. These transposi-
tions correspond to the moves between associated pegs which in turn implies that
the so-called Schreier graph of the action of H(p) on the nth level of the p-ary tree
is obtained from Hn

p by adding the appropriate number of loops to vertices of Hn
p .

The resulting graph is then a (p
2
)-regular graph. Going into more detail would be

beyond the scope of this book; let us just mention that in [117] Grigorchuk and
Šunić determined the spectrum of the Schreier graphs corresponding to Hn

3 .

Many properties of all Hanoi graphs have thus been clarified by now. On the
other hand, while metric properties of Hn

3 are well understood, it should be clear
from the previous sections that metric properties of Hn

p are notoriously difficult
for p > 3. In preparation for more numerical experiments, we will now investigate
equivalence classes of states and tasks. Referring to Section 0.5.2 again, we now
consider the group (Γ, ⋅ ,1) = (Aut(Hn

p ), ○ , id) and let it act on X = V (Hn
p ) =[p]n0 by the action g.s = σg(sn) . . . σg(s1). Then, by Theorem 5.33, ∣Γ∣ = p! and in

order to make use of Theorem 0.8 and Corollary 0.9, we have to look at the sets
Xg and Γs.

Let fp(σ) be the set of fixed points of σ ∈ Sym([p]0). Then q ∶= ∣fp(σ)∣ ∈ [p+1]0
and σ as restricted to [p]0 ∖ fp(σ) is a derangement on p − q elements. A state s

is a fixed point under the corresponding automorphism g if and only if (we may,
of course, assume that n ∈ N) it “lives” on fp(σ), i.e., s([n]) ⊂ fp(σ); there are

∣Γs∣ = (p−∣s([n])∣)! such automorphisms. Theorem 0.8 yields ∣Γ.s∣ = p!

(p − ∣s([n])∣)! ,
such that the size of an equiset [s] can have one of the values

p!

(p − q)! , q ∈ [p].
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There are {n
q
} states s whose n discs are distributed onto precisely q pegs, whence

the number of equisets in Hn
p is

∣[X]∣ =
p

∑
q=1

{n
q
} .

On the other hand, there are (p
q
)(p − q)¡ permutations σ with ∣fp(σ)∣ = q,

each leading to qn fixed points of the corresponding automorphism g, such that

∑
g∈Γ

Xg =
p

∑
q=1

(p
q
)(p − q)¡ qn

whence from Corollary 0.9:

∣[X]∣ =
p

∑
q=1

(p − q)¡
(p − q)!

qn

q!
.

We summarize these facts, including the case n = 0 for completeness.

Theorem 5.34. The vertex set [p]n0 of Hn
p , n ∈ N0, decomposes into

p

∑
q=0

{n
q
} =

p

∑
q=0

(p − q)¡
(p − q)!

qn

q!

equisets with respect to the symmetries of Hn
p .

For q ∈ [p− 1]0, {nq } equisets have size p!

(p−q)!
; { n

p−1
}+{n

p
} equisets have size

p!.

If we let the automorphism group of Hn
p act on the set X = [p]n0 ×̇ [p]n0 of

non-trivial tasks for the TH with p pegs and n ∈ N discs, we obtain, by the same
arguments, but observing that we now have to consider the union s([n]) ∪ t([n])
of the images of the initial and goal states to be distributed onto q pegs,

Theorem 5.35. The set of non-trivial tasks [p]n0 ×̇ [p]n0 on Hn
p , n ∈ N, decomposes

into
p

∑
q=2

({2n
q
} − {n

q
}) =

p

∑
q=2

(p − q)¡
(p − q)!

qn(qn − 1)
q!

equisets with respect to the symmetries of Hn
p .

For q ∈ {2, . . . , p − 2}, {2n
q
} − {n

q
} equisets have size p!

(p−q)!
; { 2n

p−1
} + {2n

p
} −

{ n

p−1
} − {n

p
} equisets have size p!.

Some numerical values can be found in [151, Table 3].
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5.6 Numerical Results and Largest Disc Moves

Only very few mathematically provable statements are known for P2-type tasks
of the TH with more than three pegs. In particular, this applies to the diameter
of Hn

p . The best general result is

Proposition 5.36. For all p ≥ 3 and n ∈ N0:

diam(Hn
p ) ≤ 2n − 1 .

Proof. Induction on n, where in the induction step we can choose a special path
between states is and jt, namely passing ikn and jkn for some k ∈ [p]0 with
i ≠ k ≠ j. It can be made, by Lemma 5.17, of length d(s, kn) + 1 + d(t, kn) which,
by induction assumption, is less than or equal to 2n+1 − 1. ◻

Although we know from Theorem 2.25 that the upper bound in Proposi-
tion 5.36 can not be improved for p = 3, the numerical results from Section 5.3
show that in contrast to the Sierpiński situation (cf. Corollary 4.9), this upper
bound is very bad for general p. In particular, this is true for small n, where we
have the following

Theorem 5.37. For all p ≥ 3 and n ∈ [p − 1]:
diam(Hn

p ) = 2n − 1 .
The lower bound for diam(Hn

p ) follows from the remark preceding Proposi-
tion 5.20, whereas the upper bound is an immediate consequence of

Proposition 5.38. Let s, t ∈ [p]n0 , p ≥ 3, n ∈ [p−1]. Then there is an s, t-path in Hn
p

in which at least one disc moves at most once and all other discs move at most
twice; discs in end position5 do not move at all. In particular, d(s, t) ≤ 2n − 1.

For the proof of Proposition 5.38 we need the following lemma (cf. [17,
Lemma 5.13]).

Lemma 5.39. Let s, t ∈ [p]n0 , p ≥ 3, n ∈ [p − 1]. Then there exists a peg which is
empty in both states, s and t, or from state s some disc can move directly to its
position on the bottom of some peg in state t.

Proof. Assume that no peg is empty simultaneously in both, s and t. Let there be
e ∈ [p − 1] empty and o = p − e occupied pegs in state s. Then state t contains e

bottom discs on the pegs empty in s. At least one of these must be a top disc in
state s, because otherwise there would be o + e = p or more discs. ◻

Now the proof of Proposition 5.38 follows by induction on n.

Proof of Proposition 5.38. For n = 1, we have Hn
p ≅ Kp, such that at most one

move of the only disc is needed. Now let s, t ∈ [p]n+10 , n ∈ [p − 2]. Move as many

5A disc is in its end position if it and all discs underneath it in t are on their goal peg.
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discs as possible directly to their end positions. Then, by virtue of Lemma 5.39,
some peg k is empty simultaneously in the resulting state s′ and in the goal state
t. Let d be the smallest disc which is not already in its end position. (If there is
no such disc, then s′ = t and each disc was moved at most once.) Then d must be
a top disc in both s′ and t. (Color discs in end position green, all others red, then
no red disc lies underneath a green one in s′ and t.) Now move disc d to peg k

and solve the task s′n+1 . . . s
′
d+1 s

′
d−1 . . . s

′
1 → tn+1 . . . td+1 td−1 . . . t1 on the pegs from

[p]0 ∖ {k}. By induction assumption this can be done by moving at least one disc
from [n + 1] ∖ {d} at most once and all others at most twice; discs in end position
in s(′) do not move. (If p = 3 at most one disc is moved, which is possible even on
2 pegs.) Disc d is finally moved from k to td in its second move. ◻

Note that an algorithm could be based on the procedure just described which
solves a task in Hn

p in at most 2n−1 moves, but that this solution is not necessarily
optimal.

With a similar approach one can improve the upper bound on distances for
flat-ending tasks.

Proposition 5.40. Let s, t ∈ [p]n0 , p ≥ 3, n ∈ [p]0, with ∀d ∈ [n] ∶ td = d − 1. Then
there is an s, t-path in Hn

p in which at most ⌊n
2
⌋ discs move precisely twice and

all other discs move at most once, those in end position not at all. In particular,
d(s, t) ≤ n + ⌊n

2
⌋.

The proof will be given in Exercise 5.10, together with the radius of small Hanoi
graphs.

Although maybe not as fast as 2n, radii, eccentricities, and diameters are
increasing for larger n. For i, j ∈ [p]0, i ≠ j, and s, t ∈ [p]n0 , n ∈ N0, consider an
is, jt-path of length d(is, jt). It engenders an is, it-walk by just ignoring all moves
of disc n + 1. Since i ≠ j, this walk must be shorter by at least one edge than the
original path. This shows that

∀ i, j ∈ [p]0, i ≠ j ∀s, t ∈ [p]n0 , n ∈ N0 ∶ d(s, t) = d(is, it) < d(is, jt) ,
such that in particular

∀ j ∈ [p]0 ∀ t ∈ [p]n0 , n ∈ N0 ∶ ε(t) < ε(jt) .
Hence, the radius, eccentricity of perfect states ε(0n), and the diameter of Hn

p are
strictly increasing with respect to n for fixed p (cf. [283, Lemma 6]). The relatively
sophisticated arguments even for small Hanoi graphs indicate how difficult it will
be to obtain more quantitative results in general. We therefore have to resort to
computational experiments.

5.6.1 Path Algorithms

In order to construct solutions for P2-type tasks for the TH with p pegs by com-
puter, e.g., to calculate the diameter of Hn

p , it would, of course, be most economic
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just to consider one representative of each equiset of tasks. There is an elegant
algorithm by K. A. M. Götz to obtain a representative set of states (cf. [112]). We
construct a tree with 0 as a starting vertex, signifying that the largest disc lies
on peg 0. In every next level we append new disc configurations by placing the
smaller disc onto all already occupied pegs and only on the first non-occupied one.
In the nth row we get representatives for all equisets; see Figure 5.11.

0

00 01

000 001 010 011 012

0000 0001 0010 0011 0012 0100 0101 0102 0110 0111 0112 0120 0121 0122

Figure 5.11: Generating representatives of equivalence classes in [V (H4
3)]

In case one wants to perform calculations for a couple of problems with
different numbers of pegs, it should be more effective, at first not to constrict the
entries in the tree to pits, but to construct it admitting qits, where q is the largest
p one is interested in and afterwards to sort out those configurations where more
then p pegs are involved.

A couple of computations for eccentricities have been carried out by
Meier [232] for p > 4 to the effect that Korf’s phenomenon could not be detected
for disc numbers up to 17 (p = 5), 15 (p = 6), and 14 (p = 7,8), respectively. With
recourse to the restriction to representatives it was also possible to tackle the calcu-
lation of what we called EX for p = 4, namely EX(n) = diam(Hn

p )−d(0n, (p−1)n).
The values turned out to be 0 for n ≤ 11 (p = 5,6), 10 (p = 7), and 8 (p = 8), the
limits being caused by availability of computer power.

An impressive indication of how much more intricate metric properties are for
Hanoi graphs Hn

p in comparison with Sierpiński graphs Sn
p is given in Figure 5.12,

where the average eccentricity, normalized with respect to diameter, is plotted
against n.

5.6.2 Largest Disc Moves

With the ordinary BFS algorithm we get a rooted tree and can therefore obtain,
for each vertex of the graph, only one shortest path to the root. In order to keep
track of all shortest paths, we have to modify the search. Instead of immediately
marking a vertex as visited, we register all its immediate predecessors. Only after
the new level is completed are all its vertices marked as visited. With the resulting
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Algorithm 18 we can compute distance layered graphs like the one in Figure 5.13;
cf. also Exercise 5.11.

Figure 5.13 shows that there can be no simple formula for Hanoi graphs like
(4.12) in Corollary 4.6 in the case of Sierpiński graphs; for instance, disc 5 can
move already in the 7th step, but the 4 smallest discs are reunited on one peg only
after 9 moves. Moreover, we see that on half-path, when the largest disc 7 can
move for the first time, there are the following states: 0221111, 0112222, 0222111,
and 0111222. To each of them a lot of paths lead which makes up for many shortest
paths between perfect states. It seems that n = (p

2
) + 1 is the smallest number of

discs where this happens.
With these computations we can also address the subtower assumption of

Frame. We look for optimal non-subtower solutions in Hn+1
p , i.e. to distribute
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Algorithm 18 All shortest paths algorithm
Procedure ASP (G,r)
Parameter G: graph
Parameter r: root vertex {r ∈ V (G)}

for u ∈ V (G) do
P (u) ← {} {set of predecessors of u}
mark u as unvisited

end for
level← −1
nextLevel← {r}
mark r as visited
while nextLevel ≠ {}
level← level + 1
currentLevel ← nextLevel

nextLevel← {}
for u ∈ currentLevel do

for v ∈ N(u) do {set of neighbors of u}
if v is unvisited then

put vertex v into nextLevel

P (v) ← P (v) ∪ {u}
end if

end for
for v ∈ nextLevel do

mark v as visited
end for

end for
end while

n ∈ N0 discs from peg 0 to pegs 1 to p − 2 (to allow disc n + 1 to move from
peg 0 peg p − 1). A specific example for p = 5 and n = 6 has been given in [63,
p. 237]. Table 5.5 contains the calculated numbers of such non-subtower solutions
for p ∈ {4,5,6} and n ∈ [15]0; distributions differing only by a permutation of pegs
1 to p − 2 are counted as one.

p ∖ n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
4 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 3 14 28 20 5 0 0 0 0 0 0
6 0 0 0 0 0 6 46 185 451 614 489 234 66 9 0

Table 5.5: The number of essentially different non-subtower solutions in Hn+1
p

These numerical results strongly suggest the following statement.
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0 1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

Figure 5.13: Distance layered graph H7
4 from perfect state 07 till half-path states

Conjecture 5.41. Optimal non-subtower solutions between two perfect states in
Hn+1

p exist if and only if p ≤ n + 1 < (p
2
).

If confirmed, this conjecture, together with Proposition 5.20, would justify
Frame’s subtower assumption, because solutions leading to the FS numbers are
always subtower solutions.

Recall from Chapter 2 (cf. p. 112) that a long standing myth for three pegs
was that the largest disc will not move more than once in a shortest solution. It
was shown in Theorem 5.19 that this is in fact true for P1-type tasks even for any
number of pegs. However, alreadyH2

3 demonstrated that the one-move-assumption
is false in general (cf. Figure 2.24). On the other hand, Corollary 2.31 asserts that
on a geodesic of Hn

3 ≅ Sn
3 the largest disc moves at most twice, and we were able
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to extend this statement to all Sierpiński graphs Sn
p in Theorem 4.8. As for Hanoi

graphs Hn
p , we already proved in Proposition 5.38 that two largest-disc-moves,

which we will again refer to as LDMs, are sufficient to solve any task if n < p, and
Aumann showed that in this case the largest disc never moves thrice in an optimal
solution; cf. [17, Theorem 5.16]. Intuition says that this should be the case for all
p and n, but, alas, intuition is (again) completely wrong!

The graph H4
4 in Figure 5.9 looks so tangly that it comes as no surprise that

it contains examples of tasks whose shortest solutions include three LDMs. One
such task is 0233 → 3001. It can be solved optimally with 1, 2 or 3 LDMs; see
Exercise 5.12. More LDMs are not possible for Hn

4 though. The general upper
bound is an immediate consequence of the boxer rule Lemma 5.17:

Theorem 5.42. The number of LDMs in a shortest path in Hn
p is at most p − 1.

Proof. Any k LDMs will involve k + 1 different pegs, such that k ≤ p − 1. ◻
But are there examples that this upper bound of LDMs may be necessary

for an optimal solution? Of course, for p = 3, we already saw one in Figure 2.25
for H3

3 . For p = 4 we have to provide 6 discs to find a task requiring 3 LDMs to
be solved optimally, e.g., 022333 → 300101, which has a unique optimal solution
of 10 moves, 3 of which are LDMs.

The upper bound of Theorem 5.42 seems very rough and inconsistent with
the intuition that the largest disc will not move more than twice. However, the
following surprising theorem due to Aumann [17, Korollar 6.2] asserts that the
bound of Theorem 5.42 is best possible for any p !

Theorem 5.43. If n ≥ p(p − 2), then p − 1 LDMs are necessary for some P2-type
tasks.

The proof is by constructing such tasks explicitly.
It is now perfectly natural to ask, which patterns of LDMs do occur. For

instance, are there tasks in Hn
p whose shortest path may have two or five, but

not one, three, four or more than five LDMs? This pattern will be encoded as the
bit vector 10010. What are the minimum numbers of pegs and discs for such a
pattern of LDMs to occur? For the classical case p = 3 we got a complete picture
of the number of tasks with (the only) non-trivial LDM patterns 01, 11, and 10 in
Section 2.4. Since there are only few analytical methods to construct such tasks
or to prove their (non-)existence for p > 3, the occurrences of LDM patterns were
computed numerically.

In Algorithm 18 each vertex will be accompanied by the bit vector describing
its LDMs which is updated each time the vertex is visited. If the largest disc is
moved in the transition from vertex u to vertex v, then the new bit vector of v is
calculated as follows

if LDM(u) = 0 then
LDM(v) ← LDM(v) ∨ 1 {“ ∨ ” means bitwise (inclusive) or}

else LDM(v) ← LDM(v) ∨ 2 ⋅LDM(u) {“2⋅ ” means left-shift of binary vector} ;
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otherwise, if a smaller disc is moved, we update the bit vector of v as follows

LDM(v) ← LDM(v) ∨LDM(u) .
Analytical and numerical results for 3 and up to 7 pegs are collected in Figure 5.14.
For each particular p a table is drawn using small graphical symbols, the meanings
of which are briefly explained on top of the figure. Possible patterns of LDMs for
a given number of pegs are coded on the left side of the corresponding table with
black and white dots. The number at the head of these first few columns stands
for the number of LDMs. The values above the other columns are the respective
numbers of discs. This right-hand side of every table displays colored squares each
containing a cross mark, a check mark, or a question mark. The first two of these
marks indicate the (non-)existence of the corresponding kind of task. Squares with
a check mark are filled with a dark color and squares with a cross mark with a light
color in order to discern possible regularities. Green fields testify that the (non-)
existence of an LDM pattern was proved by analytical arguments, blue stands for
numerical results and brown for a conjecture. With the question mark we disclose
that we do not even have a clue for what the correct answer in these cases might
be.

The non-regular structure of the entries in the tables in Figure 5.14 enforces
the impression of high complexity of the TH with more than three pegs, as it
was imposed already by other considerations in this chapter. The interpretation
of these tables is not easy, because seemingly recurring structures are annihilated
by counter-examples. One conjecture, however, is strongly suggested by the facts:

Conjecture 5.44. If an LDM pattern b ∈ [2p−1]0 occurs in Hn
p , then it occurs in

every Hm
p for m ≥ n.
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Figure 5.14: Patterns of LDMs
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5.7 Exercises

5.1. Fill in the details of the bookkeeping in the proof of Theorem 5.4.

5.2. Show that the FSC* holds for ν ∈ [3]0.
5.3. (Klavžar, Milutinović, and Petr [174]) Show that the TH with n ∈ N discs

and p ∈ N pegs has exactly
p

∑
k=1

(n − 1
k − 1)p

k

regular states in which discs on every peg form a superdisc. Here pk =
∏k−1

i=0 (p− i) is the k-th falling power of p, and the empty set of discs is treated
as a superdisc.

5.4. Show that P̃q(ν) = Pq(ν) for all q, ν ∈ N0.

5.5. Recall from (5.4) that g(3, n) is the minimum number of moves, taken over
all s ∈ T n, needed to displace each disc at least once when starting at s. Show
that g(3, n) = 2n−2 + 1 for n ≥ 2.

5.6. (Klavžar, Milutinović, and Petr [171, p. 62]) Show that for any n ∈ N0 and
p ≥ 3,

∥Hn
p ∥ = 1

4

p

∑
k=1

k (2p − k − 1){n
k
}pk .

5.7. (Hinz and Parisse [152, Theorem 1]) Show that Hn
p is hamiltonian for any

p ≥ 3 and any n ∈ N.

5.8. Prove that H2
p has a unique perfect code and that its codewords are the

perfect states.

5.9. Show that the graph H3
4 is not planar.

5.10. Give a proof for Proposition 5.40. Then show the following for p ≥ 3:
a) ∀n ∈ N0 ∶ rad(Hn

p ) ≥ n + ⌊n2 ⌋ ,
b) ∀n ∈ [p]0 ∶ rad(Hn

p ) = n + ⌊n2 ⌋ .
5.11. (Klavžar, Milutinović, and Petr [174]) Consider the TH with n ≥ 3 pegs

and n discs, and the task to move the discs from a perfect state in to a
different perfect state jn. Show that there are precisely (n−1

2
)(n−2)!

that are at distance n from in on optimal paths from in to

5.12. Find optimal solutions for the task 0233 → 3001 in H4
4 which employ 1, 2,

and 3 LDMs, respectively.

states
jn.



Chapter 6

Variations of the Puzzle

TH is an example of a one person game; such games are known as solitaire games.
There are plenty of other mathematical solitaire games, the Icosian game, the
Fifteen puzzle, and Rubik’s Cube are just a few prominent examples. Numerous
variations of the TH can also be defined, some natural and some not that natural.
In fact, Lucas himself in [211, p. 303] pointed out the following: “Le nombre des
problèmes que l’on peut se poser sur la nouvelle Tour d’Hanoï est incalculable.”1

Many variations were indeed studied and some of them we already encountered in
previous chapters: problems in Chapter 3 allowing for irregular states, the STH in
Chapter 4, and the tasks in Chapter 5 where more than three pegs are available.

In the next section we make clear what is understood as a variant of the
TH. We first illustrate this by a brief look at a variety called Exchanging Discs
Tower of Hanoi, and then by introducing and solving the Black and White TH.
Numerous “colored” variants are listed in the subsequent section, including the
Tower of Antwerpen. In the concluding section we present the Bottleneck Tower
of Hanoi (BTH) which allows for larger discs above smaller ones up to a certain
discrepancy. We describe an optimal algorithm and note that the solution for the
BTH may not be unique. We close this chapter by briefly mentioning a related
version, the Sinner’s TH.

6.1 What is a Tower of Hanoi Variant?

In order to make precise which variants of the TH are of interest, we define the
framework as follows.

Any variant of the TH consists of pegs and discs such that discs can be
stacked onto pegs. In addition, it obeys the following common rules:

1. Pegs are distinguishable.
1The number of problems which one can pose oneself on the new Tower of Hanoi is incalcu-

lable.

A. M. Hinz et al., The Tower of Hanoi – Myths and Maths,
DOI: 10.1007/978-3-0348-0237-6_7, � Springer Basel 2013
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2. Discs are distinguishable.

3. Discs are on pegs all the time except for moves.

4. One or more discs can only be moved from the top of a stack.

5. Task: given an initial distribution of discs among pegs (initial state) and a
goal distribution of discs among pegs (final state), find a shortest sequence
of moves that transfers discs from the initial state to the final state obeying
the rules.

Although the above conventions appear rather restrictive, they offer a
tremendous number of different variations. For instance,

• there can be an arbitrary number of pegs (as we have seen already);

• pegs can be distinguished also by their heights, that is, by the number of
discs they can hold;

• discs can be distinguished in size and/or color;

• (certain) irregular (with respect to TH rules) states may be admitted;

• more than one top disc may be moved in a single move;

• there can be additional restrictions or relaxations on moves, the latter even
violating the divine rule;

• and, of course, any combination of the above.

The interest for such variants goes all the way back to Lucas, who in [211]
proposed a variant with five pegs and four groups of discs of different colors. Each
peg can hold all discs. Every group contains four discs and the 16 discs have
pairwise different sizes. The group of color c ∈ [4] consists of the four discs d ∈ [16]
with 1 + (16 − d) mod 4 = c. All this can be deduced from the figure of the goal
state as produced by Lucas on the first page of his article. Figure 6.1 shows the
initial configuration of this type of puzzle. A possible task is to transfer all discs
onto the middle peg obeying the divine rule; see [210, Quatrième problème].

Note that since the 16 discs are of mutually different sizes, this puzzle is
equivalent to an instance of a type P1 problem (that is, to reach a perfect state
from a given regular state) with p = 5 and n = 16, namely, e.g., (1234)4 → 016.
In [210], Lucas also proposed type P2 problems (to reach a regular from another
regular state). Although his formulation of the tasks leaves room for interpretation,
we think that he is requiring two [210, Première problème] or three [210, Troisième
problème] colors to be united on the center peg, respectively, with the other colors
remaining in their initial position. Finally, Lucas proposes similar tasks with the
initial state changed to 14243444, i.e. the discs grouped in four towers according
to size, and the inverse problems.

It is interesting to compare, for the task to reunite two colors, what would be
the optimal number of moves if they were restricted to 3 or 4 pegs, respectively.
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Figure 6.1: An initial state of the Lucas variant with four colored stacks

The former task is equivalent to (12)4 → 08 in H8
3 and has been solved already

in Proposition 2.19 with the result that it takes 182 moves to accomplish. Using
4 pegs, i.e. in H12

4 , a new phenomenon occurs, namely that it makes a difference
which pair of colors is chosen to be united. If the relatively smallest discs end where
they were, i.e. for the task (123)4 → (003)4, it takes 39 moves (see Figure 6.2 and
Figure 6.3, where all shortest paths are shown with the special solution highlighted
by the black dots). If the relatively largest discs remain fixed, i.e. (123)4 → (100)4,
the optimal number of moves is 32, and for the intermediate case (123)4 → (020)4
it is 37. The minimum number of moves needed to conjoin two colors using all 5
pegs ranges from 31 with the relatively smallest discs fixed to 23 for the largest
ones. In the variant with four size-groups, i.e. starting from 14243444, the range
is wider, from 16 to 38. These results can be obtained either by a combinatorial
analysis or by computation.

A dependence on the relative size of the color groups of discs also occurs in
[210, Deuxième problème], the P2-type task mentioned in Section 2.4, namely to
switch the position of two colors. If only one auxiliary peg is employed, as Lucas
imposed, then, as we will see below in Section 6.2, 183 moves are necessary. If,
however, we solve the task on all 5 pegs, we will only need between 29 if the
relative largest groups are swiched and 21 for the smallest two. Again the range
is larger for size-grouped tasks, namely from 17 to 33.

The tasks in [210, Troisième problème] and [210, Quatrième problème] could
only be approached by numerical experiments at the time. To unite three colors
starting from (1234)4 (or 14243444) needs from 39 (31) to 43 (47) moves depending
on which color group from 1 to 4 ends in their starting position. For the goal
016 our calculations found 63 (54) as the optimal number of moves. Moreover,
ε((1234)4) = 63 and ε(14243444) = 60. In the latter case, the goal state 316 seems
to be the most eccentric challenge.
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Figure 6.2: Optimal solution for the task (123)4 → (003)4

Figure 6.3: All solutions for the task (123)4 → (003)4; the color of an edge corre-
sponds to the color of the disc moved

Although all problems from [210] can be interpreted formally in the frame-
work of Chapters 2 and 5, the coloring of the discs changes the character of
the game because it transmits additional information during execution; cf. Ex-
ercise 2.5. In other variants, however, colors enter into the rules of the game.

We next describe another old variant in order to illustrate what is meant
by moving more than one top disc in a single move and what is understood as
additional restrictions on moves. This variant, named the Exchanging Discs Tower
of Hanoi (EDTH) was proposed back in 1944 [290] and solved 50 years later by
Stockmeyer et al. [315]. The variant is of type P0—transfer a perfect tower of n
discs from one peg to another—where the only moves allowed are:

• disc 1 can move from any peg to any peg, and
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• if for some d, 1 < d ≤ n, discs d− 1 and d are top discs on different pegs, then
they can be exchanged in a single move.

In [315] an algorithm is designed that solves the EDTH. The number of the moves
performed can be expressed as a non-homogeneous linear recurrence of order 4
which in turn implies that asymptotically the number of moves made is approxi-
mately

1.19188 ⋅ 1.85356n .
Moreover, it is proved that the solution given by the algorithm is the unique
optimal solution.

In the rest of this section we take a closer look at another color variant of
the TH that was recently proposed by Stockmeyer and F. Lunnon in [316]. Just
as Lucas’s variant, this one involves a combination of more pegs and colored discs,
but it also gives an additional restriction on moves. We will call this variant the
Black and white TH (BWTH).

The BWTH consists of four pegs, a set of n white discs, and a set of n

black discs. Each of the disc sets consists—just as in the classical TH—of discs
of mutually different diameters and the two sets of discs are identical with the
exception of their color. The rules are as in the classical TH, except that the
divine rule is complemented by “you must not place a disc on the other disc of
the same size”. Initially the n white discs form a tower on peg i and the n black
discs form a tower on peg j, where i, j ∈ [4]0, i ≠ j. The goal is to reach the state
in which the roles of pegs i and j are interchanged: white discs form a tower on
peg j and black discs on peg i. Figure 6.4 shows, for n = 5, the initial state for the
case i = 0, j = 2, and another legal state of the puzzle. It follows from the extended
divine rule that a peg can hold only one disc of a given size. Therefore, it is not
necessary that a peg can hold more than n discs at a time.

Figure 6.4: An initial and a legal state of the Black and white TH

Algorithm 19 gives a solution for the BWTH. It reduces to several instances
of the standard TH with three pegs, so any procedure from Chapter 2 that finds
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the unique solution of the TH can be used. Since we are dealing with a puzzle
with four pegs, let us again make use of Algorithm 15 whose call FS3(m,1, i, j, k)
transfers a tower of m smallest discs from peg i to peg j using auxiliary peg k (and
the fourth peg is not involved at all). This is independent of the color of discs.

Algorithm 19 Black and white
Procedure bw(n, i, j)
Parameter n: number of white/black discs {n ∈ N0}
Parameter i: source peg for white discs {i ∈ [4]0}
Parameter j: source peg for black discs {j ∈ [4]0}

if n ≠ 0 and i ≠ j then
{i, j, k, l} ← {0,1,2,3} {k and l are the pegs different from i and j}
FS3(n − 1,1, i, k, l) {transfers n − 1 smallest white discs to peg k}
move (white) disc n from i to l {moves largest white disc to peg l}
FS3(n,1, j, i, l) {transfers the black discs to their goal peg}
move (white) disc n from l to j {moves largest white disc to its goal}
FS3(n − 1,1, k, j, l) {transfers n − 1 smallest white discs to their goal}

end if

Note that in the call FS3(n,1, j, i, l) the black disc n is moved only once
(from peg j to peg i), so the white disc n on peg l is not an obstruction for the
call. Since procedure FS3 needs 2m − 1 moves to transfer a tower of m discs from
one peg to another, it is straightforward to see that Algorithm 19 completes its
task in 2n+1 − 1 moves. Moreover, it can be shown that no other algorithm can
do better (a proof of which is left for Exercise 6.1), hence we have arrived at the
following result from [316]:

Theorem 6.1. Algorithm 19 solves the BWTH with n black discs and n white discs
in the optimal number of 2n+1 − 1 moves.

We close the section by listing variations of BWTH that were studied in [316].

Variant A Consider the BWTH with an additional restriction on the moves: white
discs cannot be placed on auxiliary peg k and black discs cannot be placed
on auxiliary peg l.

The minimum number of moves needed to solve variant A is

3(2n − 1) , (6.1)

as shown in [316], where two optimal algorithms for solving this variant are
described.

Variant B Suppose we have 2s, s ≥ 3, pegs numbered by integers from [2s]0 and
s stacks each consisting of n discs. The stacks are identical except for their
color, that is, there are s pairwise differently colored stacks. Initially the
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stacks are on pegs 0,2, . . . ,2s − 2, respectively. The goal is that for i ∈ [s]0,
the stack from peg 2i is transferred to peg (2i + 2)mod (2s), where discs
from peg 2i can, besides pegs 2i and 2i + 2, only use peg 2i + 1. Peg 2i + 1
can thus be considered as a private peg for discs that are initially on peg 2i.
In Figure 6.5 this variant is presented for the case with four colored stacks
(s = 4) each containing four discs (n = 4).

Figure 6.5: Variant B with s = 4 = n
Let s ≥ 3. Then the minimum number of moves needed to solve variant B

is
s(2n − 1) + 2n−1 . (6.2)

For an example see Exercise 6.2. An optimal algorithm for the general case
can be found in [316].

Extending the definition of variant B to s = 2, a puzzle equivalent to
variant A is obtained. However, different approaches for s ≥ 3 and s = 2 are
needed and this is the reason why they are treated as different puzzles. In
particular, for any n ≥ 2, the minimum number of moves for variant A given
in (6.1) is larger than the number obtained from (6.2) for s = 2. This means
that the above mentioned optimal algorithm for variant B cannot be applied
for puzzle A (because it would lead to forbidden moves).

Variant C This variant is obtained from variant A by adding an additional peg to
it and allowing white and black discs to use this peg.

Variant C is of similar nature as the TH with four pegs, Stockmeyer
and Lunnon give an algorithm that needs FSn

4 + 2FSn−1
4 + 2 moves to reach

the final state. Having in mind our considerations from Chapter 5 it seems
unlikely that a provably optimal algorithm for variant C can be found easily.
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6.2 The Tower of Antwerpen

We already discussed a variation proposed by Lucas himself in 1889 containing
discs of different colors. Of course, the variety of variations one can pose with
colored discs is beyond any control. In Section 6.1 we have considered the BWTH
and three offsprings; in this section we present additional variants of TH with
colored discs. We first stage the Tower of Antwerpen, then list four variations of
this puzzle, and conclude with the Hanoi Rainbow problem which in turn leads to
numerous additional variants.

The Tower of Antwerpen (TA) was proposed in 1981/82 by Wood [345, Vari-
ant 2] and presumably invented in that city. It consists of three pegs, a set of n
black discs with pairwise different diameters, a set of n yellow discs, and a set
of n red discs.2 These three sets are identical except for their colors. Each peg
can hold all discs. Initially each of the three colored sets of discs forming a tower
on one peg, the goal is to reach the state in which the three colored sets again
form towers but such that each tower rests on a different peg than originally.3 It
is understood that the classical TH rules have to be observed, which means, in
particular, that discs of the same size may be put on top of each other during
execution. See Figure 6.6 for the TA with n = 5.

Figure 6.6: Initial and final and a general regular state of the Tower of Antwerpen

The problem was solved eight years later by Minsker in [236]. Clearly, for
n = 1 five moves are optimal, otherwise the following holds:

2Wood used different colors.
3One could say explicitly from which peg to which peg a given colored stack has to be moved,

as done in [345], but the puzzle clearly remains the same as presented here.
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Theorem 6.2. Let n ≥ 2. Then the TA puzzle with 3n discs can be solved in the
optimal number of 3 ⋅ 2n+2 − 8n − 10 moves.

An optimal solution of the TA need not be unique. Already for n = 1 the
reader can easily verify that there are three optimal solutions; for n = 2 see Exer-
cise 6.3. (In fact, for n = 2 there are 30 optimal sequences of moves, see [236].)

In the rest of the section we present variations of the TA that also received
attention in the literature.

Little Tower of Antwerpen

The Little Tower of Antwerpen (LTA) is defined just as the TA, except that there
are two colored towers (say golden and silver) each consisting of n discs and the goal
is to interchange these two towers. We remind the reader that a disc of one color is
allowed to be put onto a disc of the same size of the other color, which makes this
puzzle inherently different from the BWTH discussed in Section 6.1. The LTA was
introduced and discussed by Minsker in [237]. He obtains the minumum number
of moves 1

3
(7 ⋅ 2n+1 − 9n − 11 + (n odd)) . Moreover, he finds that there are exactly

2⌊(n+1)/2⌋ different optimal sequences of moves.
In [247], Obara and Hirayama considered the following variant of the LTA.

As before, the initial state consists of two colored towers each composed of n discs,
say n golden discs on peg 0 and n silver discs on peg 2. The goal is now to reach
the state where on peg 0 one finds the silver disc n, the golden disc n − 1, the
silver disc n − 2, the golden disc n − 3, . . . , and the disc 1 of the corresponding
color (depending on the parity of n), all the other discs lie on peg 2. A recursive
solution for this puzzle is proposed with no attempt to prove its optimality.

In Figure 6.7, the above two tasks are summarized (bottom arrow and left-
most arrow upwards, respectively), together with still some other ones one might
pose.

Twin- and Triple-Tower Problems

All the tasks of Figure 6.7 can also be solved in the setting of a variation very
similar to the LTA which was proposed in 1991 by van Zanten [350]. It was named
the Twin-Tower problem (TT) and differs from the LTA by allowing a silver disc
to be put on the golden disc of the same size, but not the other way round. All the
rest is the same, in particular the object of the puzzle is to exchange a perfect tower
of n ∈ N silver discs with a perfect tower of n golden discs. Denoting silver discs
by 1,3, . . . ,2n−1 and the golden ones by 2,4, . . . ,2n, i.e. shrinking the silver discs,
it is easy to observe that the TT is the following instance of a type P2 problem
of the classical TH: (01)n → (10)n. Based on our experience from Sections 2.4
and 4.2, the solution is rather straightforward. We first show that moving the
largest disc only once will lead to the unique optimal solution. Applying the H3-
to-S3 automaton to the first three pairs of input (0,1), (1,0), and (0,1) yields
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Figure 6.7: A collection of tasks for rules from Antwerpen

the sequence of pairs (0,1), (2,2), (1,0) and starting the P2 decision automaton
with i = 0, j = 1, and k = 2 (from the first pair) in state A, we enter the second
pair (k, k) leading to state B; the third pair (j, i) already gives the final result
that this is a type I task. We can now decompose the optimal solution into the
transfer of 2n − 1 discs to peg 2, the single move of disc 2n to peg 1, and the
sorting of the (2n − 1)-tower according to parity. It can be argued whether this
is a humane solution: although the human problem solver might skip the decision
problem and assume that the largest disc moves only once because the initial
and final states make the alternative rather unlikely, and even if the P1-type part
of the solution can be handled, the sorting back seems to be a rather difficult
task for a human. By Proposition 2.19 the optimal solution will need altogether
2 ⌊5

7
22n−1⌋+1 = ⌊5

7
4n⌋+(nmod 3 = 1)moves (cf. [350, Theorem 3.3]). Note that this

is the same number of moves as needed for Noland’s problem (cf. p. 91), except for
the case “nmod 3 = 1”, where one more step is necessary. Apart from the trivial
case n = 1, the latter occurs, e.g., for the task in Figure 6.8, where the optimal
solution comprises 183 moves; cf. Section 6.1.

In Exercise 6.4 the reader is asked to solve the problem when we add a single
person to the twins. Some solutions to the tasks in Figure 6.7 may be surprising;
see Exercise 6.5.
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Figure 6.8: Interchanging gold and silver

Van Zanten also posed a Triple-Tower problem (TTT) [349, p. 7f], which
starts from dealing n ∈ N discs cyclically among all three pegs and asks for a
permutation of the situation on the pegs. Again, this can be solved efficiently with
the methods of Section 4.2. For an example, see Exercise 6.6.

Linear Twin Hanoi

Minsker [238] proposed and investigated an additional variant of the LTA: it differs
by disallowing moves between pegs 0 and 2. The task is to interchange a perfect
tower consisting of n white discs stacked initially on peg 0 with a perfect tower
consisting of n black discs stacked initially on peg 2. (In the terminology of Chap-
ter 8 we could say that the Linear Twin Hanoi (LTT) is a combination of the
LTA with the Three-in-a-row puzzle.) The minimum number of moves needed to
solve the LTT as found by Minsker is 10 ⋅ 3n−1 − 4n − 2, and for n ≥ 2 he identifies
25⋅3

n−2−2 different optimal sequences of moves.

Classical-Linear Hybrid problem

Yet another variation of the LTT (and consequently of the (L)TA) was suggested
by Minsker [239]. Now there are n discs, each colored black or white in an arbitrary
way, which initially form a perfect tower on peg 0. The goal is to transfer the tower
to peg 2, where the black discs must follow the linear rule (no moves between pegs
0 and 2) while there is no such restriction for the white discs. Minsker gives an
optimal algorithm for this puzzle in [239], while in [240] he extends the study of
this puzzle to P1 and P2 type problems. Type P1 problems have unique optimal
solutions, just like in the classical TH, but there are situations when the largest
disc moves twice in the optimal sequence of moves, contrary to the case of the
classical TH; cf. Theorem 2.7.

To conclude the section colorfully we describe the Hanoi rainbow problem
(THR). This variant was proposed by R. Neale in [243] and subsequently studied
by Minsker in [235]. The puzzle is a type P0 problem that differs from the classical
TH as follows. The discs are colored such that in the initial state adjacent discs are
assigned different colors, while the divine rule is extended by the requirement that



222 Chapter 6. Variations of the Puzzle

a disc can never be placed on a disc of the same color. Minsker first gives a natural
extension, called Procedure Rainbow, of the classical recursive Algorithm 4. This
procedure always solves the problem, however, it need not be optimal. A more
involved procedure is also given that always finds an optimal solution. The special
case when the discs of the initial configuration are alternately colored with m

colors is of particular interest. Here, for m = 3, Procedure Rainbow is proved to
be optimal, and it was conjectured that this holds for any odd m ≥ 5. As far as we
know, this conjecture remains open.

6.3 The Bottleneck Tower of Hanoi

A plausible way to vary the TH is to relax the divine rule as follows. Consider
the standard setup with three pegs and discs 1,2, . . . , n, and let t ≥ 1 be a fixed
integer, the discrepancy of the puzzle. Then a top disc d of some peg is allowed to
move to some other peg j whenever

d − d′ < t (6.3)

holds for any disc d′ that lies on peg j. In other words, if in a regular state of the
puzzle disc d is placed higher than disc d′, then d has to be less than d′ + t. The
task is to transfer discs from a perfect state to a perfect state on another peg with
the minimum number of moves under this relaxed divine rule. Figure 6.9 displays
a regular state of the new puzzle with t = 4. It is a regular state for all puzzles
with discrepancy at least 4, but it is not regular for smaller discrepancies.

10
9
8

76
5

4

3

2 1

Figure 6.9: A regular state of the Bottleneck Tower of Hanoi with discrepancy 4

Note that when t = 1, condition (6.3) reads d ≤ d′ and consequently d < d′.
Therefore discrepancy t = 1 is the usual divine rule. However, for each fixed t ≥ 2
a new puzzle is obtained.

These puzzles were introduced in 1981 by Wood [345, Variant 1] who also
posed the problem to determine the minimum number of moves for any discrepancy
t and any number of discs n. In 1992 Poole [261] named these puzzles Bottleneck
Tower of Hanoi, hence we will shortly call them BTH. More specifically, let BTHt

stand for the BTH with discrepancy t. Poole also provided a solution to Wood’s
problem and implicitly described an algorithm that uses the minimum number of
moves. We now describe this algorithm, where we may assume that n ≥ 2.
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The main idea is to start by moving the smallest n − 1 discs to the auxiliary
peg, then move disc n to the goal peg, and finally move the smallest n − 1 discs
from the auxiliary peg to the goal peg. Hence the idea goes along the same lines as
the classical recursive solution of the TH (Algorithm 4). However, while moving
the smallest n − 1 discs one should use the discrepancy as much as possible. To
do so, divide the (n− 1)-tower of the initial perfect state from bottom to top into
subtowers of t discs each, except the topmost one, called B1, which may contain
between 1 and t discs. The partition is schematically shown in Figure 6.10, where
N comes from the decomposition n − 1 = (N − 1)t + r, with N ∈ N and r ∈ [t].

n

{n-1

}
}

}
}

t

t

t

rB

B

B

B

.

.

.
.
.
.

1

2

N-1

N

Figure 6.10: Setup for the Bottleneck Tower of Hanoi algorithm

Let B be a subtower as constructed above and suppose that at some stage
of the algorithm the discs of B are the top discs on peg i. Assume that all discs
on peg j, j /= i, are bigger than any of the discs from B. Then the discrepancy t

allows us to move all discs of B one by one from peg i to peg j. Clearly, we need
only t moves (or r, if B = B1) for this transfer and the resulting state is a legal
state with respect to the BTHt. Since after this operation the discs of B lie on
peg j in the upside-down order with respect to their previous position on peg i,
we denote the sequence of these moves with

upside-down(B, i, j) .
Let the move of a disc d from peg i to peg j be denoted by i

d→ j and recall
that p0(n, i, j) (Olive’s algorithm—Algorithm 2) transfers n discs from peg i to
peg j. Then Poole’s approach can be encoded as presented in Algorithm 20.

Correctness of Algorithm 20 Since the procedure p0(n, i, j) obeys the standard
divine rule and each of the blocks Bl, l ∈ [N], consists of at most t discs,
each of the states reached by Algorithm 20 is legal with respect to BTHt.
Moreover, recall from Proposition 2.4 that during the run of p0(n, i, j) disc
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Algorithm 20 Solution of the Bottleneck Tower of Hanoi
Procedure BTH(t, n, i, j)
Parameter t: discrepancy of BTH {t ∈ N}
Parameter n: number of discs {n ∈ N0}
Parameter i: source peg {i ∈ T }
Parameter j: goal peg {j ∈ T }

if n = 0 or i = j then STOP
if n = 1 then move disc n from i to j and STOP
let n − 1 = (N − 1)t + r, where r ∈ [t]
let B1 contain discs 1, . . . , r

for l = 1, . . . ,N − 1, let Bl+1 contain discs r + (l − 1)t + 1, . . . , r + lt
k ← 3 − i − j {the auxiliary peg different from i and j}

run p0(N, i, k) and replace its moves k′
d→ k′′ with upside-down(Bd, k

′, k′′)
{using discrepancy t, transfers n − 1 smallest discs to auxiliary peg}

move disc n from i to j {moves largest disc to goal peg}

run p0(N,k, j) and replace its moves k′
d→ k′′ with upside-down(Bd, k

′, k′′)
{using discrepancy t, transfers n − 1 smallest discs to goal peg}

d ∈ [n] is moved 2n−d times. It follows that Algorithm 20 moves each block
Bl, l ∈ [N], exactly 2 ⋅ 2N−l times. Since this is an even number, all blocks
have their smallest disc on top at the end of the execution. In other words,
Algorithm 20 terminates with the perfect state on peg j.

Number of moves by Algorithm 20 For n ≤ 1, the algorithm makes n disc moves.
If n > 1, then in each of the calls p0(N, i, k) and p0(N,k, j), block B1 is
moved 2N−1 times. Since each move of B1 consists of r individual disc moves,
the total number of moves of discs from B1 is

2 ⋅ r ⋅ 2N−1 = r2N .

Similarly, in each of the calls p0(N, i, k) and p0(N,k, j) block Bl+1, l ∈ [N−1],
is moved 2N−l−1 times. Since each move of Bl+1 consists of t moves of discs,
the total number of moves of discs from B2, . . . ,BN is

2 ⋅ t ⋅ (2N−2 + 2N−3 +⋯+ 20) = 2t(2N−1 − 1) .
Together with the single move of disc n, the total number of moves is

r2N + 2t(2N−1 − 1) + 1 = (r + t)2N − 2t + 1 .

Optimality of Algorithm 20 In [261] Poole correctly claimed that Algorithm 20
uses the minimum number of moves needed to solve BTH but his argument
was not complete because it assumed that before the last move of disc n
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(to the goal peg), all the other discs lie on the spare peg.4 However, during
the last move of disc n, discrepancy t permits that discs n − t + 1, . . . , n − 1
are distributed arbitrarily among source peg and auxiliary peg. About 15
years later, Xiaomin Chen, B. Tian and L. Wang [57] and Y. Dinitz and
S. Solomon [74] pointed out that Poole’s arguments were insufficient and
presented complete proofs of optimality of Algorithm 20. The two groups
of authors worked on the problem independently, at almost the same time,5

and with different approaches. In both cases the arguments are long and
non-trivial.

In conclusion, we have the following result:

Theorem 6.3. Let t ∈ N be the discrepancy of the BTH and let n ≥ 2. Set n − 1 =
(N − 1)t+ r, where r ∈ [t]. Then Algorithm 20 solves BTHt in the optimal number
of moves (r + t)2N − 2t + 1.

Note that when t = 1 the decomposition n − 1 = (N − 1)t + r gives r = 1 and
we have N = n − 1. Hence the number of moves made by Algorithm 20 is 2n − 1
which is the number of moves of the optimal solution of TH (Theorem 2.1).

Poole’s arguments from [261] did not consider solutions in which the largest
disc moves more than once. Dinitz and Solomon [74] then proved that in every
optimal sequence of moves the largest disc indeed moves only once. On the other
hand, in [73] they showed that an optimal solution of the BTH is not unique in
general (cf. Exercise 6.7); earlier uniqueness was wrongly claimed in [261, Corol-
lary 3]. Moreover, they described the set of all optimal solutions for the BTHt and
proved that their number is

((t + τ
t
) − (t + τ

t + 1))
⌈2⌈

n−1
t
⌉−2⌉−1

,

where τ = (n − 1)mod t.
The BTH on four pegs was considered by A. A. K. Majumdar and A. Halder

in [224].
To close the section we add that Chen, Tian, and Wang [57] considered

another related variant of TH and named it Sinner’s Tower of Hanoi. It differs
from the standard TH in that for a given s, one can disobey the divine rule at
most s times. More precisely, at most s times we may put a disc directly onto a
smaller disc. Chen et al. solved the Sinner’s TH and proved that the minimum

4This is the corresponding quotation from [261, p. 206]: “Since the tower must finish in
standard position, disk n must be placed on the (empty) destination peg. In order to do this,
the other disks must first be moved into a legal position on the spare peg.”

5The paper of Dinitz and Solomon was submitted in February 2006, the one of Chen, Tian
and Wang in May 2006. On the other hand, the latter paper was published in 2007 and the
former in 2008.
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number of moves for n discs is

⎧⎪⎪⎪⎨⎪⎪⎪⎩

2n − 1, n ≤ s + 2 ;
4n − 2s − 5, s + 2 ≤ n ≤ 2s + 2 ;

2n−2s + 6s − 1, 2s + 2 ≤ n .

6.4 Exercises

6.1. Show that any solution of the BWTH with 2n discs requires at least 2n+1 −1
moves.

6.2. Give an optimal solution for the variant B of the BWTH for s = 3 and n = 2.
6.3. Show that the solution for the TA with 3 × 2 discs is not unique.

6.4. (van Zanten [349, p. 6f]) Solve the TTH for an odd total number of discs,
i.e. with an extra disc 2n + 1.

6.5. Which of the two largest discs (gold or silver) will move more often in the
(unique) optimal solution for the task given by the leftmost arrow in Fig-
ure 6.7, but with the rules of the TTH?

6.6. What is the first move and the length of the optimal path for the task
01201201→ 10210210 in H8

3?

6.7. (Dinitz and Solomon [73]) Verify that the sequence of transfers

1234567 ∣ ∣ → 34567 ∣21 ∣ → 567 ∣21 ∣43 → 567 ∣ ∣1243 →
7 ∣65 ∣1243 → 217 ∣65 ∣43 → 217 ∣465 ∣3 → 17 ∣2465 ∣3 →
17 ∣32465 ∣ → 7 ∣132465 ∣ → ∣132465 ∣7 → ∣32465 ∣17 →
3 ∣2465 ∣17 → 3 ∣465 ∣217 → 43 ∣65 ∣217 → 1243 ∣65 ∣7 →
1243 ∣ ∣567 → 43 ∣21 ∣567 → ∣21 ∣34567 → ∣ ∣1234567

is an optimal solution for the BTH2 and that it is different from the sequence
of moves produced by Algorithm 20.



Chapter 7

The Tower of London

The Tower of London (TL) was invented in 1982 by Shallice [291] and has received
an astonishing attention in the psychology of problem solving and in neuropsy-
chology. Just for an illustration, we point out that in the paper [151], which sets
up the mathematical framework for the TL, no less than 79 references are listed!
The success of the TL is due to the fact that on one hand it is an easy-to-observe
psychological test tool, while on the other hand it can be applied in different
situations and for numerous clinical goals. It is hence not surprising that several
additional variations of the TL were proposed to which we will turn in Section 7.2.
Here we only mention the Tower of Oxford introduced by G. Ward and A. Allport
in [334] and named in [151, p. 2936], but which is mathematically the same puzzle
as the TH without the divine rule or either the BTH with maximal discrepancy.1

7.1 Shallice’s Tower of London

The classical TL consists of three differently colored balls (instead of discs) of
equal size and of three pegs that can only hold up to 1, 2, and 3 balls, respectively.
See Figure 7.1 for two states of the puzzle.

The goal of the puzzle is to reach a specified state from another designated
state in the minimum number of moves. The best way to visualize all tasks is to
draw the state graph of the puzzle. Let the balls be numbered 1, 2, 3, where, say,
1=blue, 2=red, 3=yellow. In addition, use the symbol “ ∣ ” to delimit balls among
pegs and list balls on a given peg from top to bottom, just as it was done in
Chapter 3. For instance, the states from Figure 7.1 are

∣ ∣1 2 3 and 1 ∣3 ∣2 ,
respectively.

1However, the Tower of Oxford and the TH without the divine rule are arguably different in
the psychological sense.

A. M. Hinz et al., The Tower of Hanoi – Myths and Maths,
DOI: 10.1007/978-3-0348-0237-6_8, � Springer Basel 2013
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Figure 7.1: Two states of the Tower of London

By inspection it is straightforward to deduce that the state graph of the TL
has order 36 and that it can be drawn as in Figure 7.2. We denote it by L. Clearly,
L is planar and degree balanced in the sense that it has 12 vertices of each of the
degrees 2, 3, and 4.
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Figure 7.2: The state graph of the Tower of London

Note the similarity between L and the Hanoi graph H3
3 , but also their differ-

ences. It is therefore clear that the TL and TH as used in psychological tests are
not equivalent.

With L at hand it is easy to check that the minimum number of moves from
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the left-hand side state to the right-hand side state of Figure 7.1 is 7. Moreover,
there are three different solutions with that many moves. It is also easy to check
that the diameter of the TL graph is 8. The following property of L is also of
interest and is not completely obvious from its drawing.

Proposition 7.1. L contains a hamiltonian path but no hamiltonian cycle.

Proof. L contains a hamiltonian path as can be seen from Figure 7.3.

Figure 7.3: A hamiltonian path in L

To show that L is not hamiltonian though, we make the following two obser-
vations on the graph.

• The 12 vertices of degree 2 form a perfect code on L; their neighborhoods,
consisting of one vertex of degree 3 and one vertex of degree 4, respectively,
are therefore not overlapping.

• Any two vertices of degree 3 are not adjacent in L.

From this it follows that on a cycle C in L containing all its vertices also no two
vertices of degree 4 (in L) are adjacent. (See Exercise 7.1 for an alternative proof
of this fact.)

Now have a look at Figure 7.4. Since the vertex ∣ ∣1 2 3 is of degree two, C
necessarily contains the subpath 1 ∣ ∣2 3 → ∣ ∣1 2 3 → ∣1 ∣2 3. Since ∣1 ∣2 3 is of degree
four, the above argument implies that the next vertex on C must be ∣2 1 ∣3. Since
3 ∣2 1 ∣ is of degree two, C continues with 3 ∣2 1 ∣ and 3 ∣1 ∣2. The latter vertex is of
degree four, and there are two possibilities how to continue C. If we would proceed
with ∣3 1 ∣2, we would not be able to leave the inner circle in Figure 7.4 anymore.
So we must continue with 3 ∣ ∣1 2. Proceeding with the argument we infer that C

stays on the outer circle without ever visiting any of the vertices on the inner
circle, the final contradiction. ◻
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Figure 7.4: Equivalent drawing of the state graph of the Tower of London

We now give a brief example of how the TL is used in (neuro)psychology;
as already mentioned, this will be just the tip of an iceberg of related extensive
investigations.

Again, a task is an ordered pair of different states, namely the start and the
goal state. Hence there are 36 × 35 different tasks one can pose on the TL. They
come in blocks of six so-called “iso-problems” (cf. W. K. Berg and D. L. Byrd
in [33]) differing only in a permutation of the colors. So there are only 210 essen-
tially different tasks representing the equivalence classes of the set of tasks with
respect to the six color permutations.

Of course, from the mathematical point of view, iso-problems are of the same
difficulty. On the other hand they look different to a test person. Starting out from
this, A. H. Faber et. al. [100] performed an experiment on 81 volunteers. It turned
out that only one third of the participants were aware of the repetition of iso-
problems which, together with the fact that the test persons showed a linear trend
of improvements in solution times, led to the conclusion that they learned without
realizing it. The authors conclude by saying that “this study might open a new
functional domain, namely implicit memory, that can be assessed with the Tower
of London.”
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7.2 More London Towers

For normal test persons the classical TL is by far too simple. With only 36 vertices
and a diameter of 8, the London graph L can almost be explored in one flash. Only
the number of alternative moves, caused by the maximal degree of 4, poses a little
difficulty in finding shortest paths. J. R. Tunstall [325] was the first to propose a
TL with four balls and all three pegs extended to be able to hold one more ball
each, i.e. 2, 3 and 4, respectively (cf. Figure 7.5). This version has been investigated
mathematically in [151] embedded in a more general notion of London graphs. It
turns out that this class of graphs offers a number of challenging mathematical
problems which we will explore in the present section.

Figure 7.5: State 2 ∣3 ∣41 of Tunstall’s TL version L4
234

The generalized TL has p ≥ 3 pegs and n ≥ 2 balls (to avoid trivialities).
Each peg labelled2 k ∈ [p] can hold at most a given number hk ∈ N, its height, of

balls. Then n ≤
p

∑
k=1

hk balls, colored, i.e. numbered, from 1 to n, can be distributed

among the pegs. A legal move consists of transferring the topmost ball on one peg
to the top of another one, space permitting. Again there is no other limitation like
the divine rule to be observed here.

Each state can be represented uniquely by a permutation s ∈ Symn+p, where
si is the position of ball i ∈ [n] or either of the bottom of peg i−n, if i ∈ [n+p]∖[n].
These positions are read from top to bottom on a peg and from left to right for

2For the TL this labelling has an advantage over the one for the TH.
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the pegs just like in the classical TL. As there, we will write state s in the form
Σ1 ∣ . . . ∣Σp , where Σk is the string of ball labels (colors) in positions sn+k−1 + 1
to sn+k, representing the balls (from top to bottom) on peg k ∈ [p]; here sn+0 is
not sn, but 0. Again, the upright bars stand for the bottoms of the pegs, peg p

being omitted. For example, Figure 7.5 shows the state 2 ∣3 ∣41 in Tunstall’s TL,
where p = 3, n = 4, and h = 234 (i.e. h1 = 2, h2 = 3, h3 = 4). In this state, ball 2
is in position 1, such that s2 = 1, the bottom of peg 1 is in position 2, meaning
s5 = 2, and so on until we reach s1 = 6 and s7 = 7 (the omitted bar); therefore, in
the notation for a permutation as on p. 28, the state is written as s = 6135247.
The corresponding state graph will be denoted by L4

234. More generally, we have
the following.

Definition 7.2. For p ≥ 3, n ≥ 2, and h ∈ [n]p with
p

∑
k=1

hk ≥ n, the London graph

Ln
h has the vertex set consisting of all those s ∈ Symn+p, which fulfill the condition

∀k ∈ [p] ∶ 1 ≤ sn+k − sn+k−1 ≤ hk + 1, sn+p = n + p .
The edge set of Ln

h is composed of those pairs of vertices whose corresponding states
are linked by an individual legal move of one ball. The special case On

p ∶= Ln
np is

called an Oxford graph; cf. [151, p. 2937].

Note that the restriction to values in [n] for the hks is no loss of generality,
because there are not more than n balls to be distributed.

Quite obviously, the classical London graph L is equal to L3
123. However,

London graphs pose a lot of interesting mathematical questions which also touch
their usefulness in cognitive tests. It is even not simple to determine their orders
in general (see Exercise 7.2), except for the Oxford graphs (see Exercise 7.3),
for which even the size is accessible (see Exercise 7.4). More importantly, two
properties are crucial in applications for psychology tests, namely connectedness
and planarity.

An obvious condition for connectedness of a London graph is that it must be
possible to distribute all balls such that the tallest peg remains empty, because no
ball on that peg can be moved anymore if all the other pegs are filled completely.
In what follows, we will always assume that the pegs are arranged in increasing
order of their heights, i.e. h1 ≤ h2 ≤ ⋯ ≤ hp. From the mathematical point of view
this is no loss of generality, but we emphasize again that for the human problem
solver the Olympic Tower of London L3

231 (see Figure 7.6), for instance, might
have a different aspect from Shallice’s classical TL L3

123!
The necessary condition for connectedness then reads

n ≤
p−1

∑
k=1

hk. (7.1)

This is a nice example of an obviously necessary condition being (non-obviously)
sufficient as well! Here is the result of Götz [112, Lemma 18] (cf. also Hinz [148,
Theorem]):
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Figure 7.6: The Olympic Tower of London during victory ceremony

Theorem 7.3. The London graph Ln
h is connected if and only if condition (7.1)

holds.

Proof. We only have to show sufficiency of condition (7.1) for any two vertices to
be joined by a path. This will be done in a sequence of reductions.

0. We may assume that n =
p−1

∑
k=1

hk, because otherwise we can introduce virtual

balls, whose moves can afterwards be ignored.

1. We distribute all balls which are on peg p in the initial state onto the other
pegs. In a similar way, we prepare the goal state by moving away all balls
from peg p, an action which can be undone at the very end of the procedure.
So we may assume that peg p is empty in the initial and final states.

2. We now choose successively a ball which is not yet on its goal position (peg
and height on the peg) in order to interchange it with the ball currently
present there. If this can be done without altering any other ball’s position,
then there is at least one more ball in the right place. With peg p empty
and all the others filled, it cannot happen that only one ball remains in false
position during this procedure.

3. We may assume that one of the two balls to be interchanged lies on top of
peg 1, because three switches of this type cover the general case; for instance,

cx∣xbx∣xax∣ → bx∣xcx∣xax∣ → ax∣xcx∣xbx∣ → cx∣xax∣xbx∣ ,
where every x replaces a (possibly empty) collection of balls.

4. Let a be the top ball on peg 1. Then there are two cases:
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4.1 Ball b is on peg 1 as well. Move the top ball c on peg 2 to peg p, then a

to peg 2 and all other balls above and including b from peg 1 to peg p.
Then a can move back to peg 1, b to peg 2, all balls from peg p except
c return to 1, then b as well, and finally c to its original position.

4.2 Ball b is on a different peg. Move all balls above it on the same peg one
after the other to peg p, then b on top of p, a to the position b just left,
b to peg 1, and all balls from peg p to where they came from.

This completes the proof, which the reader is invited to recapitulate in Exer-
cise 7.5 a). ◻

Note that, in general, the procedure in the proof of Theorem 7.3 does not
yield an optimal path; see Exercise 7.5 b). From now on, we will only consider
connected London graphs Ln

h, i.e. those fulfilling (7.1).
The other interesting question relating to them is planarity. Apart from its

mathematical interest this is because psychologists like to use the representation of
a test person’s performance on the underlying graph of the tower puzzle in use and
therefore crossings of edges might lead to confusion. We will limit our discussion
of planarity of London graphs to the case of p = 3 pegs employed in psychological
test tools.

From Figure 7.7 it is clear that all L2

h are planar.

12||

||21 2||1 2|1| |21|

|1|2|2|1

|12| 1|2| 1||2 ||12

21||

Figure 7.7: London graphs for 2 balls

In fact, with ⊂ denoting “subgraph”,

L2

111 ⊂ L2

112 ⊂ L2

122 ⊂ L2

222 = O2

3

are shown here adding successively red, green, blue, and yellow. Note from the
figure that H2

3 ⊂ O2
3 . Actually, the underlying graph, i.e. obtained by replacing arcs
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with edges, of the mixed graph
Ð→
Hn

p of Lucas’s second problem from Chapter 3 has
the same vertex set as and is a subgraph of On

p ; cf. Figure 3.2.
Turning to London graphs L3

h, we have the following scheme.

L

∥
L3
122 ⊂ L3

123 ⊂ L3
133∩ ∩ ∩

L3
222 ⊂ L3

223 ⊂ L3
233 ⊂ L3

333∥
O3

3

We have already seen, for instance in Figure 7.4, that L is planar. Deleting vertices
(and adjacent edges) for states with three balls on peg 3 gives a planar drawing of
L3
122. On the other hand, adding the six vertices ∣ ijk ∣ , {i, j, k} = [3], to the draw-

ing in Figure 7.4, together with edges linking them to i ∣ jk ∣ and ∣ jk ∣ i, respectively,
shows that L3

133 is planar too.
To analyze L3

222, we remind the reader of two facts about the complete bi-
partite graph K3,3. First, it is not planar by Kuratowski’s theorem and second, it
can be drawn without crossings on the torus, i.e. it is toroidal. The latter property
can be seen in the left picture of Figure 7.8. The right-hand picture in that figure
shows the same situation on a plane representation of the torus. Here, the edge
leaving the top boundary has to be identified with the edge entering at the bottom,
and similarly for the two lines extending to the left and right side of the rectan-
gle which has been obtained by cutting the torus at two appropriate orthogonal
circles.

Figure 7.8: The graph K3,3 on the torus

With this preparation we are now able to interpret the drawing of London
graph L3

222 in Figure 7.9.
The figure shows that L3

222 can be drawn on a torus without crossing. On the
other hand, the subgraph drawn in red is a subdivision of a K3,3 whose vertices
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|2|13

1||23

1|2|3

13|2|

21|3|

|12|3

21||3

23||1

1|23|

3|12|

3|2|1

1|3|2

1|32|

31|2|

|32|1

31||2

3||21

|3|12

|2|31

1||32

2||31

|1|32

32||1

|31|2

2|31|

32|1||3|21

|23|1

3||12

13||2

2|13|

12|3|

3|21|

12||3

|21|3

2|1|3

3|1|2

2|3|1

2||13

|1|23

|13|2

23|1|

Figure 7.9: The graph L3
222 on the torus

are the flat states, i.e. those with one ball per peg. (The elements of the two
independent parts of the vertex set of this K3,3 are represented in Figure 7.9
as squares and triangles, respectively.) Hence L3

222 is not planar, but toroidal;
in other words, its genus is 1. However, it is not clear what its crossing number
is; cf. Exercise 7.6. All the other L3

h are toroidal because O3
3 is as is shown in

Exercise 7.7. It is worth noting that these are the only non-planar tower graphs
(Hanoi, Sierpiński, or London) whose genus is known!

Adding a ball to L3
222 shows that L4

222 is a subdivision of that graph (the
extra ball can always be moved out of the way) and therefore not planar either.
This argument can not be used for L4

133, because L3
133 is planar. So one has to

find, e.g., a subdivision of K3,3 in L4
133 to prove that it is not planar. This is a

rather tedious task given that ∣L4
133∣ = 168, so we will not give the details here. We

summarize these results as follows.

Proposition 7.4 (Hinz, A. Spitzer). For p = 3, the only planar London graphs are
L2

h, L
3
122, L

3
123, and L3

133.

Proof. It only remains to show that all London graphs for 3 pegs and n ≥ 4 balls
are non-planar. This follows for n = 4 from the non-planarity of L4

133 and L4
222,
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because every L4

h must contain one of these as a subgraph. For n > 4 one can argue
as above in the case of L4

222 by adding balls to L4

h. ◻
The already somewhat demanding graph L3

222 will also provide a good ex-
ample for the rich symmetrical structure of London graphs. The reason for this
variability is that we now have two types of permutations, namely of ball col-
ors and of pegs. For those puzzles, like Shallice’s and Tunstall’s TL, where the
peg heights are pairwise different, only color permutations are symmetries of the
graph. For instance, although Shallice’s TL and the Olympic TL have isomorphic
state graphs, their vertex sets are different such that the isomorphisms are no
automorphisms. We also already pointed out the difference of mathematical and
psychological equivalence of these two variants. So we do not claim to consider all
automorphisms of London graphs, but the above mentioned “obvious” symmetries.
For Tunstall’s TL L4

234 this means that the 69432 (non-trivial) tasks simply fall
into 2893 equisets of 24 iso-problems each. This already provides a sufficient va-
riety for the design of psychological tests, but things become more exciting when
some peg heights are equal, i.e. when symmetries can overlap. For instance, the
Oxford graph O2

3 shown in Figure 7.7 has only two non-equivalent types of states,
namely flat or tower-like, and the, admittedly not difficult, tasks 2 ∣ ∣1 → ∣1 ∣2 and
∣2 ∣1 → 2 ∣1∣ , for instance, are equivalent since they have been obtained from each
other by a rotation of the 3 pegs combined with a switch of the 2 colors. In fact,
applying all combinations of symmetries, their equiset contains 12 iso-problems.
This is the case for all but the two equivalence classes corresponding to tasks with
just a switch of the ball colors, i.e. represented by 12 ∣ ∣ → 21 ∣ ∣ and 1 ∣2 ∣ → 2 ∣1 ∣ ,
and which contain only 6 iso-problems each, engendered by rotations of pegs and
switches of colors. The 132 tasks of O2

3 can therefore be partitioned into 12 equi-
sets, 10 of which containing 12 elements.

We now can make use of these facts to deduce metric properties of the graph
O2

3 in a most efficient way. For instance, in order to obtain the average eccen-
tricity, we just have to read-off the eccentricities of one representative of each of
the two equally sized equisets of states, e.g., ε(12 ∣ ∣ ) = 4 and ε(1 ∣2 ∣ ) = 3 to find
ε(O2

3) = 3.5. Similarly, we can find the average distance in O2
3 by first summing up

all distances from each of the two representatives, namely ∑
s∈V (O2

3
)

d(12 ∣ ∣ , s) = 26

and ∑
s∈V (O2

3
)

d(1 ∣2 ∣ , s) = 21, such that d(O2

3) = 6 ⋅ 26 + 6 ⋅ 21
132

≈ 2.136. Note that,

contrary to our custom in earlier chapters, we divided by the number of non-trivial
tasks, just to please psychologists and to be able to compare with lists of values for
other tower graphs like in [151, Tables 1 and 2]; that we included trivial tasks in
the sum of distances is, of course, irrelevant. Other graph parameters like minimal,
average, and maximal degree, which are 2, 3, and 4, respectively, for O2

3 , are also
relevant in psychological test design, because they are measures for the amount
of alternatives a subject has for his decisions during a solution of a task. For a
discussion of graph theoretical measures for tower tasks in (neuro-)psychology,
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see [148].
To employ symmetry techniques for more complicated London graphs, we

have to get a bit more formal and come back to the ideas of Section 0.5.2. For
n, p ∈ N, we define the group (Γnp, ⋅ ,1np) by

Γnp = Symn × Symp, (χ1, π1) ⋅ (χ2, π2) = (χ1 ○ χ2, π1 ○ π2), 1np = (idn, idp) .
It obviously has order ∣Γnp∣ = n! ⋅ p!. Recalling that we write a permutation σ

from Symq in the form σ(1) . . . σ(q), we now describe the action of Γnp on the set
X = V (Ln

h), where h ∈ [n]p. A state s = Σ1 ∣ . . . ∣Σp is transformed into (χ,π).s =
X (Σπ−1(1) ∣ . . . ∣Σπ−1(p)), where X permutes all ball colors according to χ. For
instance, in the above example in O2

3 , the state 2 ∣ ∣1 is transformed by the rotation
of pegs π = 312 (with π−1 = 231) into ∣1 ∣2 and then by the switch of colors χ = 21
into ∣2 ∣1, such that (21,312).2 ∣ ∣1 = ∣2 ∣1.

To analyze equisets of states it now suffices to find the fixed points under this
action. Similarly, information about equisets of tasks are obtained by the action
of Γnp on the set V (Ln

h)×̇V (Ln
h), defined in the analogous way. We will ask the

reader to do the details for L3
222 in Exercise 7.8 to arrive at

Proposition 7.5. With respect to the symmetries engendered by permutations of
pegs and colors, the 42 states of L3

222 fall into 2 equisets of sizes 6 and 36, respec-
tively. Minimal, average, and maximal degrees of vertices are 3, 24

7
≈ 3.43, and 6,

respectively. The eccentricity of any vertex (and consequently the diameter of the
graph) is 5. The average distance on L3

222 is 139

41
≈ 3.39. The 1722 non-trivial tasks

come in 49 equisets, 47 of which have size 36, the other two having size 18 and
12, respectively.

Those who think that L3
222 is too easy, should try O4

4 (with ∣O4
4 ∣ = 840 and

∥O4
4∥ = 2880), where the 704760 tasks fall into 1400 equisets, 1068 of size 576, 298

of size 288, 1 of size 192, 9 of size 144, 23 of size 96, and 1 of size 72; the diameter
is 9, the average distance about 4.82, and the minimal, average, and maximal
degrees are 3, 48

7
≈ 6.86, and 12, respectively (cf. the tables in [151]). Note that

H4
4 has the same diameter, but puzzlers trying to solve tasks from O4

4 (optimally!)
will appreciate the divine rule of the TH.

7.3 Exercises

7.1. Show that if G is a hamiltonian graph and X a subset of its vertices such
that G−X consists of ∣X ∣ connected components, then no two vertices of X
are consecutive vertices of a hamiltonian cycle of G. Deduce from this that
no two vertices of degree 4 of L can be consecutive vertices of a hamiltonian
cycle.

7.2. a) Show that the condition on a permutation s in Definition 7.2 is equivalent

to the existence of an h-partition σ of n, i.e. a σ ∈ Np
0

with
p

∑
k=1

σk = n, fulfilling



7.3. Exercises 239

∀k ∈ [p] ∶ σk ≤ hk. (The value of σk is the number of balls on peg k in state
s, i.e. the length of string Σk.)

b) Find the number lnh of such partitions for h ∈ Np
0
, p ∈ N0, and n ∈ N0.

c) Show that ∣Ln
h∣ = n! ⋅ lnh .

7.3. a) Show that lnnp = (p+n−1n
) for n ∈ N0 and p ∈ N.

b) Give a more direct argument for ∣On
p ∣ = (p − 1 + n)!(p − 1)! .

7.4. Show that

∥On
p ∥ = np

2

(p − 2 + n)!
(p − 2)!

for p ≥ 2, n ∈ N0.

7.5. Consider the task to get from state 1 ∣2 ∣43 to state ∣4 ∣231 in Tunstall’s TL
L4
234.

a) Construct a solution according to the algorithm in the proof of Theo-
rem 7.3.
b) Find a shortest solution for the task.

7.6. Show that 1 ≤ cr (L3
222) ≤ 8 or give better bounds.

7.7. Construct a drawing of O3
3 on the torus.

7.8. Give a detailed proof for Proposition 7.5.



Chapter 8

Tower of Hanoi Variants with

Oriented Disc Moves

In Chapter 6 we have introduced the concept of a TH variant and presented several
such puzzles: the BWTH, additional variants with colored discs, and the BTH. We
continued in Chapter 7 where the TL (and its variations) were treated in detail.
In this chapter we turn our attention to the TH with oriented disc moves.

We first specify which TH with oriented disc moves are solvable. There are
exactly five such puzzles on three pegs; in Section 8.2 we present a unified algorithm
that solves all of them. Moreover, it turns out that for these puzzles the optimal
solution is unique. The variety of TH with oriented disc moves grows dramatically
to 83 puzzles on four pegs, hence in Section 8.3 we carefully select which of them
deserve special attention. Most of the section is then devoted to the so-called Star
TH and the Linear puzzle, but the intrinsic difficulty of the Cyclic TH with more
that three pegs is also emphasized. In the final part of this chapter, Section 8.4,
we give a classification of the solvable problems with oriented disc moves into
exponential and sub-exponential variants.

8.1 Solvability

A TH with oriented disc moves differs from the standard TH by the exclusion
of move directions between certain pegs. Such a variant is uniquely specified by a
digraph1 D whose vertices are the pegs and in which an arc (i, j) ∈ A(D) indicates
that a disc may be moved from peg i onto peg j. (Note that Variants A, B and
C of the BWTH introduced on p. 216 are also defined prohibiting certain moves
depending on disc colors.)

1In some publications these digraphs have been named “Hanoi graphs”, but this should not
be mixed up with the standard definition of Hanoi graphs as employed in the present book.

A. M. Hinz et al., The Tower of Hanoi – Myths and Maths,
DOI: 10.1007/978-3-0348-0237-6_9, � Springer Basel 2013
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The TH variant with oriented disc moves defined with digraph D will be
abbreviated by TH(D). Let

←→
Kp denote the complete digraph on p vertices, that

is, a digraph with two arcs between each pair of its p vertices. (See the leftmost
picture in Figure 8.1 for

←→
K3.) Then TH(←→Kp) is the standard TH with p pegs. Note

also that the state graph of a TH(D) with n discs has pn vertices, if ∣V (D)∣ = p.
We will restrict our considerations to type P0 problems—to transfer a tower

of discs from one peg to another in the minimum number of moves. The situation
can be different for different pairs of source and goal pegs. We therefore say that
a TH with oriented disc moves is solvable if for any choice of source and goal pegs
and for every number of discs there exists a sequence of legal moves. In this section
we characterize solvable TH with oriented disc moves. We will base this on two
specific (but important) examples, namely the Linear TH and the Cyclic TH.

Let
←→
L 3 be the digraph with the vertex set V (←→L 3) = T and the arc set

A(←→L 3) = {(0,1), (1,0), (1,2), (2,1)}; it is drawn as the central picture of the top
row in Figure 8.1. Then TH(

←→
L 3) is known as the Linear TH or the Three-in-a-row

TH. It was first briefly mentioned back in 1944 by Scorer, Grundy, and Smith [290,
p. 99] and studied in detail by Hering in [137]. (Note that most versions of the TH
to be found on the market these days have three pegs arranged in a row instead of
the original triangle. This makes the middle peg special, and many puzzle solvers
assume that a move between the other two pegs might not be allowed.)

Proposition 8.1. The Linear TH is solvable.

Proof. The statement is clearly true for one disc.
Let n ≥ 2 and suppose that the Linear TH has a solution for n − 1 discs and

for all possible pairs of source and goal pegs. Now consider Algorithm 21. The
first and the last step of the algorithm can be performed by induction assumption,
hence the algorithm transfers the tower with n discs from peg 0 to peg 1. By
symmetry, there are algorithms that transfer the tower from peg 2 to peg 1, from
peg 1 to peg 0, and from 1 to 2.

Algorithm 21 Linear: from peg 0 to peg 1
Procedure Linear-01(n)
Parameter n: number of discs {n ∈ N0}

if n ≠ 0 then
transfer n − 1 smallest discs from peg 0 to peg 2
move disc n from peg 0 to peg 1

transfer n − 1 smallest discs from peg 2 to peg 1
end if

Similarly, Algorithm 22 transfers discs from peg 0 to peg 2, hence there is
also an algorithm that moves the tower from peg 2 to peg 0. (In Exercise 8.1 the
reader is asked to determine the number of its moves.) ◻
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Algorithm 22 Linear: from peg 0 to peg 2
Procedure Linear-02(n)
Parameter n: number of discs {n ∈ N0}

if n ≠ 0 then
transfer n − 1 smallest discs from peg 0 to peg 2
move disc n from peg 0 to peg 1

transfer n − 1 smallest discs from peg 2 to peg 0
move disc n from peg 1 to peg 2

transfer n − 1 smallest discs from peg 0 to peg 2
end if

Before continuing with the solvability problem, we extend Proposition 8.1.

Proposition 8.2. The state graph of the Linear TH with n discs is the path on
3n vertices between the perfect states on pegs 0 and 2. In particular, the optimal
solution for any task is unique.

Proof. We have already observed that the state graph has 3n vertices. Consider an
arbitrary regular state s. If disc 1 is on peg 1, then only disc 1 can be moved and
there are two possible moves. Otherwise, disc 1 can move only to its neighboring
peg and, if there is at least one disc on a peg not occupied by disc 1, exactly one
additional move is possible. Hence the perfect states on pegs 0 and 2 are of degree
one, all the other vertices are of degree two.

Consider an arbitrary state s and let disc n be on peg i. Then by induction,
state s is connected by a path to the perfect state on peg i. Thus any state is
connected to some perfect state such that by Proposition 8.1 the state graph is
connected. We conclude that it is a path on 3n vertices (cf. Exercise 1.1). ◻

The path in Proposition 8.2 is realized by the following procedure starting
in 0n: move disc 1 twice in a row, make the only legal move of a larger disc, and
keep on doing this. The resulting path is also the hamiltonian path from 0n to
2n on Hn

3 of Exercise 2.17 (cf. also the path obtained by avoiding blue edges in
Figure 2.10). An even simpler strategy is given in Exercise 8.2; cf. also the remark
on the sequence of discs moved 1,1,2,1,1,2,1,1,3, . . . ([296, A051064]) in [290,
p. 99] and the bijection between move number and state on the hamiltonian path
given in [204, Theorem 5].

Note the similarity between Proposition 8.2 and Theorem 1.1, the latter
result describing the state graph of the CR puzzle. We next point out that further
parallels can be drawn between these two puzzles.

In Chapter 1 we have introduced the Gray code as a special sequence of
words from Bn in which any two consecutive terms differ by exactly one bit. This
idea can be generalized by saying that a listing of [p]n0 is a (p,n)-Gray code if any
two consecutive terms differ in exactly one position. D.-J. Guan [120] constructed
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(p,n)-Gray codes and showed that the corresponding (3, n)-Gray code encodes
the traverse of the state graph of the Linear TH between its end vertices.

Let us return to the solvability problem. Another important case is the Cyclic

Tower of Hanoi with p pegs, p ≥ 3. The digraph
Ð→
C p of this puzzle has the vertex

set V (Ð→C p) = [p]0 and the arc set is given by A(Ð→C p) = {(0,1), (1,2), . . . , (p − 2, p−
1), (p − 1,0)}. The digraph

Ð→
C p is called the directed cycle on p vertices, see the

rightmost picture in Figure 8.1 for
Ð→
C 3. The proof of the next result is left for

Exercise 8.3.

Proposition 8.3. TH(
Ð→
C p) is solvable for any p ≥ 3.

For the announced general categorization with respect to solvability, the fol-
lowing definition is needed. A digraph D = (V (D),A(D)) is called strongly con-
nected or strong for short, if for any distinct vertices u, v ∈ V (D) there is a directed
path from u to v and a directed path from v to u. Now we can state the result
which is essentially due to E. L. Leiss [190, Theorem]. As the author admits, his
proof is “quite long and tedious”. Therefore we present a more general statement
with a less involved proof.

Theorem 8.4. Let D = (V (D),A(D)) be a digraph with at least three vertices.
Then TH(D) is solvable if and only if D is strong.

Proof. Let us first assume that D is not strong. Then it contains vertices (= pegs)
i and j such that there is no (i, j)-path in D. Select i to be the source peg and j

the goal peg. Then disc 1 (and, in fact, any disc) cannot be transferred from peg
i to peg j. Indeed, otherwise the sequence of moves of disc 1 gives a directed walk
between vertices i and j which in turn contains an (i, j)-path.

Conversely, assume that D is strong, that is, for any pair of different pegs i

and i′ there exists an (i, i′)-path. Fix i and i′ and let P = i → j → ⋯ → i′ be an
(i, i′)-path, where it is possible that j = i′. By induction it suffices to prove that
the tower can be moved from peg i to peg j.

As D is strong, there also exists a directed (j, i)-path. If this path is of length
at least two, then i and j lie on a directed cycle of length at least three and the
assertion follows by Proposition 8.3. Otherwise, the only path between j and i is of
length one, that is, the path consists just of the arc (j, i). Since the TH considered
has at least three pegs and as D is strong, there is a vertex k adjacent to i or j.

Suppose (j, k) ∈ A(D). By the above, there is no (k, i)-path that does not
pass j (for otherwise i and j would lie on a common directed cycle). Therefore
there exists a (k, j)-path P not passing i. Then the tower can be transferred from
peg i to peg j using Algorithm 21, where each move of a disc from peg k to peg j

is replaced by a sequence of consecutive moves of the disc along the path P .
Assume next that (k, j) is in A(D) but (j, k) is not. Then there exists a

(j, k)-path Q of length at least two. If Q passes i, we can apply Proposition 8.3,
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otherwise we use a modification of Algorithm 21 where each move of a disc from
peg j to peg k is replaced by a sequence of consecutive moves of that disc along Q.

The case that k is adjacent to i is treated in the same way. ◻

8.2 An Algorithm for Three Pegs

By Theorem 8.4 we only need to consider those TH(D) for which D is strong.
In this section we consider the variants defined with strong digraphs D on three
vertices. Following the approach of A. Sapir [279] we show that there is a common
framework for all of them. More precisely, a single algorithm can be designed that
finds the unique optimal solution in each of the cases. At the end of the section
we also discuss the number of moves in these solutions.

It is straightforward to verify that there are exactly five non-isomorphic
strongly connected digraphs on three vertices; see Figure 8.1. Among the vari-
ants corresponding to these digraphs we have already met the classical TH, the
Linear TH, and the Cyclic TH (top row in Figure 8.1). Algorithm 23 solves all
variants. In particular it generalizes the classical recursive Algorithm 4 as well as
Algorithms 21 and 22.

0 1 20 1

2

0 1

2

0 1

2

0 1

2

←→
K3

←→
L 3

Ð→
C 3

←→
K3−

Ð→
C 3+

Figure 8.1: The strongly connected digraphs on three vertices

Theorem 8.5. For every strongly connected digraph D on three vertices, Algo-
rithm 23 returns the unique solution of TH(D) with the minimum number of
moves.

Proof. For the proof it will be useful to rename Algorithm 23 to Algorithm A. The
move of a disc d from peg i to peg j, its first move from peg i to peg j, and its
last move from peg i to peg j will be denoted by

i
d→ j, f ∶ i d→ j, and l ∶ i d→ j ,

respectively.
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Algorithm 23 Recursive general algorithm for three pegs
Procedure gp0(D,n, i, j)
Parameter D: strongly connected digraph with V (D) = T
Parameter n: number of discs {n ∈ N0}
Parameter i: source peg {i ∈ T }
Parameter j: goal peg {j ∈ T }

if n ≠ 0 and i ≠ j then
k ← 3 − i − j {the auxiliary peg different from i and j}
if (i, j) ∈ A(D) then
gp0(D,n − 1, i, k) {transfers n − 1 smallest discs to auxiliary peg}
move disc n from i to j {moves largest disc to goal peg}
gp0(D,n − 1, k, j) {transfers n − 1 smallest discs to goal peg}

else
gp0(D,n − 1, i, j) {transfers n − 1 smallest discs to goal peg}
move disc n from i to k {moves largest disc to auxiliary peg}
gp0(D,n − 1, j, i) {transfers n − 1 smallest discs to source peg}
move disc n from k to j {moves largest disc to goal peg}
gp0(D,n − 1, i, j) {transfers n − 1 smallest discs to goal peg}

end if
end if

To see that Algorithm A returns a solution we only need to observe that
whenever (i, j) ∉ A(D), we have (i, k) ∈ A(D) and (k, j) ∈ A(D) because D is
strongly connected. By induction, the algorithm indeed returns a solution.

It remains to verify that Algorithm A returns the only solution of TH(D)
with the minimum number of moves. This is again done by induction and is clear
for n = 1. Let Algorithm X be an arbitrary algorithm that solves TH(D) in the
minimum number of moves. Note that the analogue of the boxer rule (Lemma 2.26)
holds and therefore disc n is moved either once or twice.

A sequence of moves performed by Algorithm A and by Algorithm X to
transfer discs 1,2, . . . , d (that is, all discs from the set [d]) from peg i to peg j will
be denoted by

A ∶ i [d]Ð→ j and X ∶ i [d]Ð→ j ,

respectively. We now separately consider the possibilities that (i, j) is an arc of
D or not. We begin with the easier case when it is not an arc. (Interestingly,
Algorithm A is more involved in this case.)

So suppose that (i, j) ∉ A(D). Then disc n necessarily moves twice, namely
from peg i via peg k to peg j. Hence the moves of Algorithm X can be decomposed
into

X ∶ i [n−1]Ð→ j, f ∶ i n→ k, X ∶ j [n−1]Ð→ i, l ∶ k n→ j, X ∶ i [n−1]Ð→ j .
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By induction,

X ∶ i [n−1]Ð→ j = A ∶ i [n−1]Ð→ j and X ∶ j [n−1]Ð→ i = A ∶ j [n−1]Ð→ i ,

which implies that Algorithm X makes the same moves as Algorithm A, also for
n discs.

Now suppose that (i, j) ∈ A(D). We will show that in this case the largest
disc moves once only. Assume it moves twice, which means in particular that
(i, k) ∈ A(D) and (k, j) ∈ A(D). Then, by induction, the sequence of moves of
Algorithm X can be decomposed into:

X = A ∶ i [n−1]Ð→ j, f ∶ i n→ k, A ∶ j [n−1]Ð→ i, l ∶ k n→ j, A ∶ i [n−1]Ð→ j .

Let A be the sequence of moves of Algorithm A, that is,

A = A ∶ i [n−1]Ð→ k, f ∶ i n→ j, A ∶ k [n−1]Ð→ j .

We are going to show that ∣A∣ < ∣X ∣. Since in both A and X the sequences of moves
of discs 1, . . . , n − 1 are with respect to Algorithm A, we will in the rest omit the
prefix A. Employing induction again, we have

i
[n−1]Ð→ k = i

[n−2]Ð→ j, i
n−1→ k, j

[n−2]Ð→ k,

k
[n−1]Ð→ j = k

[n−2]Ð→ i, k
n−1→ j, i

[n−2]Ð→ j,

i
[n−1]Ð→ j = i

[n−2]Ð→ k, i
n−1→ j, k

[n−2]Ð→ j .

To be able to compare ∣A∣ with ∣X ∣ we also need to deal with j
[n−1]Ð→ i. For this,

we distinguish two cases.

Case 1. (j, i) ∈ A(D).
In this case j

[n−1]Ð→ i = j [n−2]Ð→ k, j
n−1→ i, k

[n−2]Ð→ i. Now,

∣X ∣ = ∣i [n−1]Ð→ j∣ + 1 + ∣j [n−1]Ð→ i∣ + 1 + ∣i [n−1]Ð→ j∣
= 2 ⋅ (∣i [n−2]Ð→ k∣ + ∣k [n−2]Ð→ j∣) + ∣j [n−2]Ð→ k∣ + ∣k [n−2]Ð→ i∣ + 5
≥ 2 ⋅ ∣i [n−2]Ð→ j∣ + ∣j [n−2]Ð→ k∣ + ∣k [n−2]Ð→ i∣ + 5
> 2 ⋅ ∣i [n−2]Ð→ j∣ + ∣j [n−2]Ð→ k∣ + ∣k [n−2]Ð→ i∣ + 3
= ∣A∣ .

In the above computation we have used identities provided above and the obvious

triangle inequality ∣i [n−2]Ð→ j∣ ≤ ∣i [n−2]Ð→ k∣ + ∣k [n−2]Ð→ j∣.
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Case 2. (j, i) ∉ A(D).
In this case j

[n−1]Ð→ i = j [n−2]Ð→ i, j
n−1→ k, i

[n−2]Ð→ j, k
n−1→ i, j

[n−2]Ð→ i. Therefore,

∣X ∣ = ∣i [n−1]Ð→ j∣ + 1 + ∣j [n−1]Ð→ i∣ + 1 + ∣i [n−1]Ð→ j∣
= 2 ⋅ (∣i [n−2]Ð→ k∣ + ∣k [n−2]Ð→ j∣ + ∣j [n−2]Ð→ i∣) + ∣i [n−2]Ð→ j∣ + 6
= (∣i [n−2]Ð→ k∣ + ∣k [n−2]Ð→ j∣) + (∣j [n−2]Ð→ i∣ + ∣i [n−2]Ð→ k∣) + (∣k [n−2]Ð→ j∣ + ∣j [n−2]Ð→ i∣)
+ ∣i [n−2]Ð→ j∣ + 6
≥ 2 ⋅ ∣i [n−2]Ð→ j∣ + ∣j [n−2]Ð→ k∣ + ∣k [n−2]Ð→ i∣ + 6
> ∣A∣ .

Hence Algorithm X cannot be optimal. So we have shown that disc n moves
directly from peg i to peg j. Again by induction Algorithm X makes the same
moves as Algorithm A. ◻

Allouche and Sapir [9] used Algorithm 23 to construct optimal sequences of
moves for the five solvable TH with oriented disc moves with the so-called infinite
morphic sequences. Earlier [7, 8] this had been done for the classical and the Cyclic
TH. Instead of giving formal definitions (the interested reader can find them in [9])
and details for all of them, let us present here a particularly appealing sequence
for the linear puzzle.2

Consider the linear puzzle, TH(←→L 3), and let a, a, b, and b, denote the move
of a topmost disc from peg 0 to peg 1, from peg 1 to 0, from 1 to 2, and from 2
to 1, respectively. To obtain the required infinite sequence, start with the term a

and subsequently apply the following substitution rules:

a→ a b a, a→ a b a, b→ b a b, b→ b a b .

The first three steps of this procedure are:

a Ð→ a b a

Ð→ a b a b a b a b a

Ð→ a b a b a b a b a b a b a b a b a b a b a b a b a b a .

The reader is invited to verify that the first 33 − 1 = 26 terms from the last line
(that is, all terms but the last one) give the solution for the Linear TH with three
pegs and three discs, source peg 0 and goal peg 2.

2This sequence is 3-automatic; the classical TH admits a 2-automatic sequence; the Cyclic
TH sequence is not k-automatic for any k; it is conjectured in [9] that the same holds for the
remaining two sequences.
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We next look at the number of moves performed by Algorithm 23. For the
classical TH we know it from Section 2, while Proposition 8.2 covers the Linear
TH. Consider next the Cyclic TH. By symmetry we infer that

∣0 [n]Ð→ 1∣ = ∣1 [n]Ð→ 2∣ = ∣2 [n]Ð→ 0∣
and

∣1 [n]Ð→ 0∣ = ∣2 [n]Ð→ 1∣ = ∣0 [n]Ð→ 2∣ .
Setting an = ∣0 [n]Ð→ 1∣ and bn = ∣1 [n]Ð→ 0∣ we have a0 = 0 = b0, a1 = 1, and b1 = 2.
Furthermore, Algorithm 23 gives us:

an = 2bn−1 + 1 ,
bn = an−1 + 2bn−1 + 2 .

Inserting the first relation into the second we get bn − 2bn−1 − 2bn−2 = 3, which,
together with b0 = 0 and b1 = 2 gives

bn = 3 + 2√3
6

(1 +√3)n + 3 − 2√3
6

(1 −√3)n − 1
and therefore

an = 2bn−1 + 1 = 3 + 2√3
3

(1 +√3)n−1 + 3 − 2√3
3

(1 −√3)n−1 − 1 .
The values an and bn (cf. [296, A005665/6]) can be rewritten as follows:

an =
√
3

6
((1 +√3)n+1 − (1 −√3)n+1) − 1 ,

bn =
√
3

12
((1 +√3)n+2 − (1 −√3)n+2) − 1 .

The remaining digraphs to be considered are the digraph
←→
K3− obtained from

the complete digraph
←→
K3 by removing one arc (the lower-left picture in Figure 8.1)

and the digraph
Ð→
C 3+ obtained from the cyclic digraph

Ð→
C 3 by adding one arc (the

lower-right picture in Figure 8.1). To determine the number of moves for TH(
←→
K3−)

and TH(
Ð→
C 3+) one proceeds similarly as we did above for TH(

Ð→
C 3). In Exercises 8.4

and 8.5 the reader is asked to develop a system of recurrence equations for these
two variants. In all the cases, the growth of the minimum number of moves with
respect to the number of discs n is asymptotically as cλn. Here λ depends only on
the given variant as represented by D, whereas c depends on D and possibly on
the given initial and goal pegs. Table 8.1 collects the values of λ.

D. Berend and Sapir [30] proved another result that holds for all TH variants
with oriented disc moves on three pegs:
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D
←→
K3

←→
K3−

Ð→
C 3+

Ð→
C 3

←→
L 3

λ 2 ≈ 2.343 1+
√
17

2
≈ 2.562 1 +√3 ≈ 2.732 3

Table 8.1: Growth parameters for the number of moves in TH(D)

Theorem 8.6. For n ∈ N and any strongly connected digraph D on three vertices,
the diameter of the state graph of a TH(D) with n discs is realized by some distance
between two perfect states.

The above theorem thus asserts that the maximum number of moves of an
optimal path among all type P2 problems is realized by a P0 problem. Of course,
in some cases (like the linear one) the two perfect states need to be selected
appropriately (in the linear case an extremal task is to move a perfect tower from
peg 0 to peg 2).

For the Cyclic TH Berend and Sapir proved in [30] that the same conclusion
holds for more than three pegs. Recall from Section 5.3 that this is not so for the
TH based on the complete digraph. In Section 8.3 we will say more about these
puzzles; we conclude the section with several remarks about TH(

Ð→
C 3).

TH(
Ð→
C 3) was independently proposed in 1979 by Hering [138] and in 1981 by

M. D. Atkinson [16]. They both proposed algorithms to solve the tasks 0n → 1n and
1n → 0n and also computed the number of moves an and bn. Hering’s note includes
a minimality proof, assuming, as usual, the largest disc to move only once. Iterative
solutions of TH(

Ð→
C 3) were given by Walsh [333], Er [87], and T. D. Gedeon [109].

In [91], Er defines a pseudo ternary code for every move number in the optimal
path from which the disc used in that move can be deduced similarly to the Gros
sequence for the classical unrestricted TH. On the other hand, Allouche [4] proved
that the infinite sequence obtained from the moves of the solution as n goes to
infinity is not k-automatic for any k ≥ 2; in other words, no finite automaton can
solve the problem based on move number. Er [88] also considered a “semi-cyclic”
variant in which some discs are allowed to move only clockwise and the other discs
only counterclockwise.

Stockmeyer [312] considered the state digraph of TH(
Ð→
C 3) and proved sev-

eral interesting properties of it, Exercise 8.6 gives a basic one. A more advanced
property is the fact that for any pair of different vertices there is a unique shortest
directed path between them. In other words, an arbitrary type P2 problem (regu-
lar to regular) has a unique solution. Based on these results Stockmeyer computed
the average distance between the states of the TH(

Ð→
C 3). Earlier Er [89] obtained

the average distance for the P1 type problem (regular to perfect). Their results
are collected in the next theorem.
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Theorem 8.7. Let n ∈ N0. Then the average distance between a regular state and a

fixed perfect state of the TH(
Ð→
C 3) is

5 + 3√3
18

(1 +√3)n − 5

9
+ 5 − 3√3

18
(1 −√3)n ,

while the average distance between regular states is

77 + 57√3
414

(1 +√3)n − 1

9
+ 77 − 57√3

414
(1 −√3)n − 6

23
(1
3
)
n

.

8.3 More Than Three Pegs

From the previous section we know that there are exactly five solvable three-peg
TH with oriented disc moves. Equivalently (cf. Theorem 8.4), there exist precisely
five non-isomorphic strong digraphs on three vertices. There are 83 such digraphs
on four vertices ([128, p. 218]; see also [296, A035512]) which can be extracted
from the figures of all the 218 digraphs on four vertices given in [127, p. 227–230].
Hence we are faced with 83 different TH puzzles with oriented disc moves on four
pegs. Therefore very good reasons should be given why one would be interested
in a specific case on four or more pegs. By now we have encountered the following
interesting examples:

• The TH with p pegs, p ≥ 4. It corresponds to the complete digraph
←→
Kp.

• The Cyclic TH with p pegs, p ≥ 4. It corresponds to the digraph
Ð→
C p.

• Let
←→
L p, p ≥ 3, be the digraph that is obtained from the path on p vertices by

replacing each of its edges by a pair of opposite arcs. (Recall that
←→
L 3 is the

digraph of the Three-in-a-row puzzle.) Let us call the puzzle corresponding
to
←→
L p the Linear TH on p pegs or p-in-a-row puzzle.

We have already treated in detail the TH with p pegs. Before considering the Cyclic
TH and the Linear TH with p pegs, we introduce another version which is due
to Stockmeyer [311]. As we will see, this puzzle interlaces with The Reve’s puzzle
and the Linear TH, leads to some interesting mathematics (cf. Theorem 8.8), and
offers a challenging conjecture, so we are well justified to treat it in detail.

The Star Tower of Hanoi

The Star Tower of Hanoi is the TH with oriented disc moves on four pegs defined
by the digraph ST4 presented in Figure 8.2. Let the pegs be denoted as indicated
in the figure, and let 0 be called the central peg of the Star TH. The goal is to
transfer a perfect tower from a non-central peg to another non-central peg in, of
course, the minimum number of moves.
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1

2 3

0

Figure 8.2: Digraph ST4

We now describe a solution of the Star TH with n discs that mimics the
Frame-Stewart solution of the Reve’s puzzle, hence we call it a Frame-Stewart-
type strategy, FS-type strategy for short. Let m ∈ [n] be a given parameter; then

1. recursively move the smallest n−m discs from the source peg to the non-goal,
non-central peg k;

2. avoiding peg k, move the largest m discs from the source peg to the goal peg
via the central peg, that is, solve the Linear TH for m discs;

3. recursively move the smallest n −m discs from peg k to the goal peg.

The described FS-type strategy for the star TH is illustrated in Figure 8.3.
By Proposition 8.2, the second step of the above FS-type strategy requires

3m − 1 moves. Hence, being interested in the smallest number of moves, set

ST 0

4 = 0; ∀n ∈ N ∶ ST n
4 =min{2ST n−m

4 + 3m − 1 ∣m ∈ [n]} . (8.1)

To determine the sequence ST n
4 and a parameter m that minimizes the expression

in the definition of ST n
4 , recall from page 172 that the 3-smooth numbers are the

numbers of the form 2j3k, j, k ≥ 0, and the 3-smooth sequence (s(3)i )
i∈N

is formed
by the 3-smooth numbers ordered increasingly:

s(3) = (1,2,3,4,6,8,9,12,16,18,24,27,32,36,48,54, . . .) .
The 3-smooth sequence is the sequence A003586 from [296], where the interested
reader can find a wealth of information about it.

We are now ready for the following attractive theorem due to Stock-
meyer [311]. As there is no danger of confusion, we will simplify the notation
s(3) to s.

Theorem 8.8. The value

m = ⌊ ln(sn)
ln(3) ⌋ + 1
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Figure 8.3: FS-type strategy for the star TH

is the unique value that defines ST n
4 in (8.1). Moreover, for every i ∈ [n], there is

a disc that makes exactly 2si moves in the corresponding algorithm and hence

ST n
4 = 2

n

∑
i=1

si .

Proof. The reader can easily verify the assertions for small values of n. Let n be
fixed and proceed by induction. Discs n−µ, µ ∈ [m]0, move according to the Linear
TH, hence by Exercise 8.1 they move aµ ∶= 2 ⋅ 3µ times, respectively. On the other
hand, by induction assumption the smallest n −m discs make bν ∶= 4sν moves,
where ν runs through [n −m].

Note that sequences (aµ)µ∈N0
and (bν)ν∈N are disjoint because 4 does not

divide aµ. Moreover, they partition the sequence c ∶= (2si)i∈N. Indeed, let ci =
2 ⋅2j3k, j, k ≥ 0. If j = 0 then ci = 2 ⋅3k is a term of a and if j ≥ 1 then ci = 4 ⋅2j−13k
is a term of b. The sum of the first m terms of a and the first n −m terms of b
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will be minimized if their union consists of the first n terms of c. This will happen
if and only if for the terms of a we have am−1 ≤ cn < am. For the minimum to be
attained we thus get 2 ⋅ 3m−1 ≤ 2sn < 2 ⋅ 3m, i.e. (m − 1) ln(3) ≤ ln(sn) <m ln(3).

We have thus proved that m = ⌊ ln(sn)
ln(3)

⌋+1 is the unique value that minimizes
the FS-type strategy for the Star TH. Moreover, the argument also shows that
discs move 2si, i ∈ [n], times, respectively, hence ST n

4 = 2∑n
i=1 si. ◻

Combining Theorem 8.8 with Theorem 5.5 we infer:

Corollary 8.9. For any n ≥ 1, ST n
4 = T (n,3,2).

With Theorem 8.8 in hand we can state Algorithm 24, where Linear-
02(n, i, j, k) denotes the call of the Linear-02(n) procedure in which n discs are
moved from peg i via peg k to peg j. Recall that 0 is the central peg of the Star
TH.

Algorithm 24 A solution for the Star TH
Procedure ST (n, i, j)
Parameter n: number of discs {n ∈ N0}
Parameter i: source peg {i ∈ [3]}
Parameter j: goal peg {j ∈ [3]}

if n ≠ 0 then
m← ⌊ln(sn)/ ln(3)⌋ + 1
ST (n−m, i,6− i− j) {6− i− j is the auxiliary peg different from 0, i and j}
Linear-02(m, i, j,0)
ST (n−m,6 − i − j, j)

end if

We point out that Theorem 8.8 asserts only that Algorithm 24 makes the
minimum number of moves among the algorithms that follow the FS-type strategy.
But it is an open problem whether Algorithm 24 makes the smallest number of
moves among all procedures that solve the Star TH. Stockmeyer [311] says: “We
strongly suspect, though, that this algorithm is indeed optimal.”

Chappelon and Matsuura [54] extended Algorithm 24 in a natural way to
the TH with oriented disc moves on more than four pegs defined by the digraphs
obtained from ST4 by attaching additional pending vertices to its center vertices.
The number of moves performed by any of these algorithms can be expressed
with the so-called generalized Frame-Stewart numbers. These numbers (introduced
in [54]) form a wide generalization of Frame-Stewart numbers.

The Linear TH

The state graph of the Three-in-a-row TH with n discs is the path on 3n vertices
(Proposition 8.2). This means that the Three-in-a-row TH is rather trivial, hence
let us look at the Four-in-a-row TH and more generally, at the p-in-a-row, p ≥ 3,
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or Linear TH on p pegs. As with the classical TH, there is a striking difference
between the puzzle on three pegs and the ones on four or more pegs; the case
p = 3 is easy, the cases p ≥ 4 seem notoriously difficult. (See Exercise 8.7 for the
p-in-a-row TH with 2 discs.)

Stockmeyer [311] initiated the study of the Four-in-a-row TH and made some
starting observations. In particular he proposed an algorithm that solves the puzzle
with n discs in 3n + n − 1 moves. More specifically, his algorithm transfers n discs
from the perfect state on peg 0 to the perfect state on peg 3. Berend, Sapir and
Solomon [32] followed by proving that the task to transfer discs from peg 0 to peg
3 is the most time consuming among the tasks to transfer discs from peg i to peg
j, where i, j ∈ [4]0 and proved that the task can be done in less than

1.6
√
n3
√
2n

moves. The main idea to derive this result is to split the tower of n discs into
a subtower of small upper discs, an intermediate subtower of big discs, and the
third subtower consisting of disc n only, where the intermediate subtower consists
of about

√
2n discs. Then moving subtowers “naturally” solves the puzzle, while

a careful analysis of the number of moves yields the estimate. Table 8.2 lists
minimum numbers of moves for up to n = 10 discs for all different tasks: moving
the tower from peg 1 to peg 2, from peg 0 to peg 1, from peg 0 to peg 2, and from
peg 0 to peg 3, respectively. For additional numerical results on the Four-in-a-row
puzzle see J. W. Emert, R. B. Nelson and F. W. Owens [83].

minimum number of moves for:

n 1
[n]Ð→ 2 0

[n]Ð→ 1 0
[n]Ð→ 2 0

[n]Ð→ 3

1 1 1 2 3
2 4 4 6 10
3 7 9 12 19
4 14 18 22 34
5 23 29 36 57
6 34 44 54 88
7 53 69 78 123
8 78 96 112 176
9 105 133 158 253

10 138 182 212 342

Table 8.2: Minimum number of moves for the Four-in-a-row TH

Berend, Sapir and Solomon [32] proved in addition that for every Linear
TH and for any combination of source goal peg, the number of moves needed to
transfer a perfect tower grows sub-exponentially (see the next section for a formal
definition) as a function of n. To obtain this result, they partition the discs into
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p − 1 subtowers, where the last subtower consists of disc n only. This approach
is hence like Frame’s approach to the multipeg TH (cf. Section 5.4). However,
contrary to the latter, where it turned out that Frame’s and Stewart’s approaches
are equivalent for any p ≥ 4 (cf. Theorem 5.15), the situation is different for the p-
in-a-row TH. Here splitting into p−1 subtowers leads to an algorithm with a smaller
number of moves; in fact, there is rarely a situation where smaller subtowers unify
to form larger ones.

The Cyclic TH

TH(Ð→C 4) was first considered in 1944 by Scorer, Grundy and Smith in [290]. They
discussed the task 0n → 2n and proposed the following natural recursive algorithm
to solve it:

0
[n−1]Ð→ 2, 0

n→ 1, 2
[n−1]Ð→ 0, 1

n→ 2, 0
[n−1]Ð→ 2 . (8.2)

Stockmeyer [311] observed that this algorithm is not optimal, see Exercise 8.8.
However, the minimum number of moves has not yet been determined. Even worse,
there is no natural algorithm which one might conjecture to be optimal. One of the
reasons why TH(

Ð→
C 4) is so difficult lies in the fact that there is a large number of

minimal move sequences. For instance, the task 0n → 2n for n = 4,5 and 6 has 640,
2688 and 54839936 different optimal solutions, respectively. (See [311].) Additional
numerical values for TH(

Ð→
C 4) were produced by Emert, Nelson and Owens in [84].

Berend and Sapir [29] made a profound study of TH(
Ð→
C p), p ≥ 4, and proved

several explicit lower and upper bounds for the number of moves in optimal solu-
tions. From their many results we extract the following:

Theorem 8.10. For every p ≥ 3 and n ≥ p− 1, the number of moves needed to solve

the 0n → 1n task of TH(
Ð→
C p) is at least

(p − 1)3
3

(1 + 6

7(p − 1)2)
n

.

The proof of this theorem is quite involved and therefore not given here.
Note that the bound of Theorem 8.10 is rather bad for p = 3.

8.4 Exponential and Sub-Exponential Variants

In the previous section we considered several variants of the TH with oriented disc
moves. Recall that each task of the Four-in-a-row TH can be completed in less
than

1.6
√
n3
√
2n
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moves, while on the other hand the (computationally least complex) task 0n → 1n

of TH(
Ð→
C 4) requires, for n ≥ 3, at least

9(1 + 2

21
)
n

moves. We have also said that the first estimate is sub-exponential. On the other
hand, the lower bound for the number of moves for the TH(

Ð→
C 4) is exponential. In

this section we are going to make these statements precise and, moreover, present
a classification of the solvable variants with oriented disc moves into exponential
and sub-exponential variants. The main result of this section (Theorem 8.11) is a
statement that covers all solvable TH(D).

Let D be a strong digraph. Denote by Dn the state digraph of TH(D) with
n discs. Then TH(D) is called exponential if there exist constants C > 0 and λ > 1
such that

diam(Dn) ≥ Cλn

holds for all n ∈ N. On the other hand, TH(D) is called sub-exponential if for every
ε > 0 there exists a constant C (C may depend on ε) such that

diam(Dn) ≤ C(1 + ε)n
holds for all n ∈ N0.

To describe which TH(D) problems are (sub-)exponential, the following con-
cept is useful. A digraph D is called a moderately enhanced cycle if it is obtained
from the directed cycle

Ð→
C n, n ≥ 3, by adding some arcs such that no two added

arcs are adjacent. Figure 8.4 displays an example of such a graph.

Figure 8.4: A moderately enhanced cycle

Berend and Sapir [31] proved the following appealing result:

Theorem 8.11. Let TH(D) be solvable. Then the following assertions are equiva-
lent:

(i) TH(D) is sub-exponential;
(ii) For some vertex v of D the digraph D − v contains a strong subgraph on

at least three vertices;
(iii) D is not a moderately enhanced cycle.
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For the proof that (i) is equivalent to (ii) (or to (iii)) we refer to [31], the
equivalence of (ii) and (iii) is left for Exercise 8.9.

If D has three vertices, then, of course, no vertex-deleted subdigraph can
contain a strong subgraph on at least three vertices. Hence Theorem 8.11 in par-
ticular implies that TH(D) is exponential for any D on three vertices, a fact which
we already implicitly observed in the last part of Section 8.2.

We conclude the chapter with a further question to be posed on a TH with
oriented disc moves. It relates to situations where the task of moving a perfect
tower from one peg to another might be feasible for a small number of discs and
not solvable otherwise.

Let D be a digraph, and let i (source peg) and j (target peg) be two specific
vertices of D. Suppose in addition that for every other vertex k, there exists a
directed walk in D from i through k to j. We will call D an i, j-digraph, abbreviated
Dij . Then i1 → j1 is solvable. However, if (for instance) D is the directed i, j-path

on p ≥ 2 vertices, denoted by
Ð→
P
(p)
ij , then in → jn can not be solved for n ≥ 2. Hence

TH(Dij) will be called weakly solvable if for every n ∈ N a tower of n discs can be
transferred from i to j.

This issue was formulated by Leiss in [190]. In the same paper he character-
ized solvable digraphs as the digraphs D such that the transitive closure3 of D

contains a
←→
K3.

If TH(Dij) is not weakly solvable, then there is a largest number of discs for
which the task in → jn can be carried out; let max (Dij) denote this number. For

instance, as mentioned above, max(Ð→P (p)ij ) = 1. In addition, let

M(p) =max{max (Dij) ∣ TH(Dij) is not weakly solvable, ∣V (Dij)∣ = p} .
As max (Dij) is finite and since the number of digraphs on p vertices is also finite,
M(p) is well-defined. In fact, Leiss [191, Section 2.3] proved that M(p) grows
super-polynomially when p tends to infinity and asked whether the growth is ex-
ponential. The first part of the following theorem due to D. Azriel and Berend [19,
Theorem 1.3] answers his question in the negative.

Theorem 8.12. There exists a constant C > 0 such that

M(p) ≤ Cp
1

2
lb(p)

holds for all p ≥ 2. On the other hand, for every ε > 0 there exists a constant C > 0
(depending on ε) such that

M(p) ≥ Cp(1/2−ε)lb(p)

holds for all p ≥ 2.
3The transitive closure of a digraph D has the same vertex set as D, and (u, v) is an arc in

the transitive closure if and only if there is a (directed) path in D from u to v.
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Azriel, N. Solomon and S. Solomon [20] gave an algorithm that solves
TH(Dst) for two infinite families of graphs D and also prove its optimality. That
is, they solve infinitely many variants of TH! In the introduction to Chapter 6
we have quoted Lucas that the number of problems which one can pose oneself
on the TH is incalculable. His ingenious remark is thus literally justified by the
investigations in [20]!

8.5 Exercises

8.1. Consider the optimal solution for the Linear TH that transfers the tower of
n discs from peg 0 to peg 2. For any disc d ∈ [n] determine the number of its
moves during the optimal solution.

8.2. (Stockmeyer [314]) Consider the Linear TH and the task to transfer a tower
of discs from peg 0 to peg 2. Show that the following strategy returns the
optimal sequence of moves: if the number of discs on peg 1 is m, then the
idle peg of the next move is 1 + (−1)m.

8.3. Prove Proposition 8.3.

8.4. Determine a system of recurrence relations that define the number of moves
in TH(

Ð→
C 3+).

8.5. Determine a system of recurrence relations that define the number of moves
in TH(

←→
K3−).

8.6. Show that the state digraph of TH(
Ð→
C 3) with n discs is an orientation of the

Hanoi graph Hn
3 , that is, a digraph obtained from Hn

3 by giving an orientation
to each of its edges. Show also that the state digraph of TH(

Ð→
C 3) is strong.

8.7. (Klavžar, Milutinović, and Petr [174]) Consider the p-in-a-row puzzle
TH(
←→
L p), p ≥ 3. Show that the number of optimal solutions to transfer two

discs from peg 0 to peg p − 1 is Cp − 2Cp−1, where Cn = 1

n+1
(2n
n
), n ∈ N0, are

the Catalan numbers.

8.8. Determine the number of moves performed by the algorithm described
in (8.2) that solves the task 0n → 2n of the TH(

Ð→
C 4). In addition find a solu-

tion for n = 3 discs with 18 moves and conclude that the algorithm of (8.2)
is not optimal.

8.9. Let T (D) be solvable. Show that D is a moderately enhanced cycle if and
only if there is no vertex v of D such that the digraph D−v contains a strong
subgraph on at least three vertices.

8.4. Exponential and Sub-Exponential Variants
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The End of the World

With the theory developed in Chapter 2 it was not very difficult to determine
the age of the universe, see Exercise 2.8. Similarly, the time when the end of the
universe is to be expected can be computed. The situation with the end of time
is more delicate though, especially now that this book has appeared. It cannot be
excluded that the Brahmins will be exposed to the book and consequently come
to the idea to save some time and use one more peg—the Devil’s one. Luckily for
us, the Brahmins are allowed to use only optimal strategies. Since they are men
of great honor, we are safe for the time being. But there is a constant danger that
the Brahmins or someone else will solve the Frame-Stewart conjecture. Then we
might be faced with dramatic events in the history of the universe.

These events have already been anticipated in 1966 at precisely 21 minutes
and 33 seconds into the fourth part, called The Final Test, of the episode The
Celestial Toymaker from the British science fiction television series Doctor Who.
This is the moment when the First Doctor in his 1023rd move (optimally) finishes
the classical three-peg TH with 10 discs, named the Trilogic game in this story.
Luckily for us, with the last move the Doctor only destroys the world of Toymaker,
whereas he himself and his two companions manage to escape the vanishing world
with the time machine TARDIS.

So we may continue, in our world, to play the Tetralogic game and to advance
the mathematical theory of the Tower of Hanoi. We hope that the readers are now
highly motivated to join us in this endeavor. As an incentive, we list here some
challenging problems that are waiting to be solved.

Guy’s conjecture (p. 32) on crossing numbers of complete graphs in connection
with

Köhler’s conjecture (p. 158) on crossing numbers of reduced complete graphs.

Ring conjecture (p. 67) ⌈d(s)
2
⌉ is a lower bound for the exchange number of s.

A. M. Hinz et al., The Tower of Hanoi – Myths and Maths,
DOI: 10.1007/978-3-0348-0237-6_10, � Springer Basel 2013
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Double Task Conjecture (p. 128) The optimal number of moves for the double P2
problem 0n → 2n ∥ 2n → 0n is 1

3
(2n+2 − (−1)n).

Frame-Stewart Conjecture (p. 167) ∀n ∈ N0 ∶ d(0n,2n) = FSn
4 .

Korf-Felner Conjecture (p. 182) For any n ≥ 20, ex(n) > 0.
Monotonicity Conjecture (p. 182) The function EX(n) = diam(Hn

4 ) − d(0n,3n)
is (eventually strictly) monotone increasing.

Strong Frame-Stewart Conjecture (p. 187) ∀p ≥ 3, ∀n ∈ N0 ∶ d (0n, (p − 1)n) =
FSn

p .

Non-subtower Conjecture (p. 205) Non-subtower solutions between two perfect
states in Hn+1

p exist if and only if p ≤ n + 1 < (p
2
).

LDM Pattern Conjecture (p. 207) If an LDM pattern b ∈ [2p−1]0 occurs in Hn
p ,

then it occurs in every Hm
p for m ≥ n.

Rainbow Conjecture (p. 222) Procedure Rainbow is optimal for any odd m ≥ 5

when the discs of the initial configuration are alternately colored with m

colors.

Allouche-Sapir Conjecture (p. 248) The two solvable TH with oriented disc moves
on three pegs that are not the classical, the cyclic, and the linear TH, are
not d-automatic for any d.

Stockmeyer’s Conjecture (p. 254) Algorithm 24 makes the smallest number of
moves among all procedures that solve the Star puzzle.

Some other open problems include:

• Find the exact value for the average distance on
Ð→
Hn

3 .

• Solve the recurrence from the solution to Exercise 2.19 a).

• Design an automaton analogous to Romik’s automaton for a “P2 task” in Sn
p ,

p ≥ 4.
• Find genera and crossing numbers for non-planar Hanoi and Sierpiński

graphs.

• Find an optimal algorithm for type P4 tasks in Lucas’s second problem.

• Find an optimal algorithm for BWTH Variant C.

• Find a formula for the average distance on Hanoi graphs for p ≥ 4.
• Find the diameter of these graphs.
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So it turns out that Zhuge Liang not only entertained his wife by asking her
to solve the Chinese rings and Édouard Lucas the Brahmins working on the Tower
of Benares, but generations of mathematicians are occupied with trying to find
sound statements about the mathematical theories these innocent looking puzzles
engender.

“Most mathematicians would argue that as the scale of our mathematical inves-
tigations increases so does the depth and beauty of our discoveries, illuminating
patterns within patterns ad infinitum; that our collective mathematical vision is
not an artifact of the scale of our view but instead it is a glimpse of a world
beyond.” [347, p. 350]
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Hints and Solutions to Exercises

Chapter 0

Exercise 0.1 The ansatz leads to ξn+2 =
ξn+1+ξn, such that ξ2 = ξ+1, which is solved
by τ ∶= (1+√5)/2 > 0 and σ ∶= (1−√5)/2 =
−1/τ < 0.

Let Fn = aτn + bσn with 0 = F0 = a+ b
and 1 = F1 = aτ + bσ = (a − b)√5/2.
Hence a = 1/√5 = −b and consequently

Fn = τn − σn

√
5

. (This formula is named for

J. P. M. Binet.) Similarly, if Ln = aτn+bσn

with 2 = L0 = a + b and 1 = L1 = 1 + (a −
b)√5/2, we get Ln = τn + σn.

For n ∈ N, we have

Fn+1

Fn

= τn+1 − σn+1

τn − σn
= τ − σ (σ

τ
)n

1 − (σ
τ
)n .

But σ/τ = −1/τ 2, whence ∣σ/τ ∣ < 1, such
that Fn+1/Fn → τ , as n → ∞. Similarly for
Ln.

Remark A.1. While it is by an easy in-
duction proof that one can show that there
is only one mapping F ∈ N

N0

0
which ful-

fills the recurrence (0.4) and we proved
the existence by deducing Binet’s formula,
the question whether any such recurrence
leads to a well-defined mathematical object
is rather subtle and usually ignored in the
literature. Because of the latter fact and

since the Fundamental theorem of recur-
sion is of outstanding importance even to
define such elementary things like addition
of the natural numbers, we will state and
prove it here for the connoisseur (and all
those who want to become one). Its first ap-
plication will be the definition of factorials
in the next exercise.

Fundamental Theorem of Recursion. Let
M be a set, η0 ∈M , and ϕ ∈MN0×M . Then
there exists exactly one mapping η ∈ MN0

which fulfills the recurrence

η(0) = η0, ∀k ∈ N0 ∶ η(k + 1) = ϕ (k, η(k)) .
Proof. Uniqueness. Let η,µ ∈ MN0 both
fulfill the recurrence. Then η(0) = η0 = µ(0)
and if η(k) = µ(k) for k ∈ N0, then η(k+1) =
ϕ (k, η(k)) = ϕ (k,µ(k)) = µ(k + 1). By in-
duction we get η = µ.
Existence. The wanted function η ⊂ N0 ×M
must have the following properties:

∀k ∈ N0 ∃ηk ∈M ∶ (k, ηk) ∈ η , (A)
∀k ∈ N0 ∀m1,m2 ∈ M ∶

(k,m1), (k,m2) ∈ η⇒m1 =m2 , (B)
(0, η0) ∈ η ∧ ∀k ∈ N0 ∀m ∈ M ∶

(k,m) ∈ η⇒ (k + 1,ϕ(k,m)) ∈ η . (C)
Condition (C) is satisfied, e.g., by

N0 ×M . Therefore we choose

η = ⋂{µ ⊂ N0 ×M ∣ µ fulfills (C)} .

A. M. Hinz et al., The Tower of Hanoi – Myths and Maths,
DOI: 10.1007/978-3-0348-0237-6, � Springer Basel 2013
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We now prove (A) and (B) simultaneously
by induction on k. By definition, (0, η0) ∈ η.
Assume that (0, µ0) ∈ η for some M ∋ µ0 ≠
η0. Let µ ∶= η ∖ {(0, µ0)}. Then (0, η0) ∈ µ
and if (κ,m) ∈ µ, then (κ + 1,ϕ(κ,m)) ∈ µ
as well, since no element of the form (κ +
1, `) has been taken away from η. There-
fore, µ has property (C); but then η ⊂ µ, in
contradiction to the definition of the latter
set.

For the induction step, put ηk+1 ∶=
ϕ(k, ηk). If (k + 1,m) ∈ η for some M ∋
m ≠ ηk+1, define µ ∶= η∖{(k+1,m)}. Again
(C) is fulfilled for µ ((0, η0) has not been
excluded and (k+1,m) ≠ (k + 1,ϕ(k, ηk))),
and we get the contradiction η ⊂ µ. ◻

Exercise 0.2 a) Induction on `. There
is exactly one (injective) mapping from
[0] = ∅ to [k]. An injection ι from [` + 1]
to [k], ` ∈ [k]0, can have k values for
ι(`+ 1), and ι ↾ [`] (↾ stands for “restricted
to”) runs through all injections from [`]
to [k] ∖ {ι(` + 1)}, such that there are all

in all k
(k − 1)!

((k − 1) − `)! =
k!

(k − (` + 1))! injec-

tions from [` + 1] to [k].
The statement about bijections fol-

lows from the special case ` = k, together
with the pigeonhole principle which ex-
cludes the possibility of an injection from
[k] to a smaller set.

b) Again by the pigeonhole principle, there
is no subset of [k] with ` > k elements. For

k ≥ `, we have from (a)
k!

(k − `)! injective

mappings from [`] to [k]. Each element of

([k]
`
) occurs `! times as a permuted image

set of one of these injections.

c) For k < `, all three terms are 0. For k = `,
we have (k + 1

` + 1) = 1 = (
k

`
) and ( k

` + 1) = 0.
If k > `, then k+1 ≥ `+1, k ≥ `, and k ≥ `+1,

such that from (b) we get

(k
`
) + ( k

` + 1) =
k!

`!(k − `)! +
k!

(` + 1)!(k − ` − 1)!
= (k + 1)!
(` + 1)!(k − `)! = (

k + 1
` + 1) .

Exercise 0.3 a) The case k = 0 is just
for definiteness: of course, the empty set
[0] can neither be permuted nor deranged
in the ordinary sense of these words, but
there is precisely one mapping from [0] to
[0], and this mapping does not have a fixed
point, such that f0 = 1. On the other hand,
the only mapping from [1] to [1] clearly
has a fixed point, whence f

1
= 0.

Let k ∈ N and ` ∈ [k]. Any derange-
ment σ on [k] can be modified to yield a
derangement σ̃ on [k+1], namely by defin-
ing σ̃ = σ on [k] ∖ {`}, σ̃(`) = k + 1, and
σ̃(k + 1) = σ(`), i.e. by mapping ` on k + 1
and the latter to the former image of `. This
makes up for k ⋅fk derangements on [k+1].

A derangement σ on [k − 1] can be
manipulated as follows. Define τ ∶ [k−1] →
[k]∖{`} by τ(i) = i for i < ` and τ(i) = i+1
otherwise. This yields a derangement σ̃ on
[k+1] by putting σ̃ = τ ○σ○τ−1 on [k]∖{`},
σ̃(`) = k + 1, and σ̃(k + 1) = `. This leads to
another k ⋅ fk−1 derangements on [k + 1]
which are obviously different from the ones
constructed earlier by the fact that they
just switch k + 1 with some ` ∈ [k]. Con-
versely, a derangement on [k+1] either has
this property or not, such that it is easy to
convince oneself that all of them are among
the k (fk+fk−1) constructed ones. We thus
observed the two basic rules of counting,
namely not to forget any object and not to
count any twice.
b) To show that (0.14) follows from (0.15)
is easy: clearly, x1 = 0 and for k ∈ N, we can
add the two equations

xk+1 = (k + 1)xk − (−1)k ,
xk = kxk−1 + (−1)k ,

to obtain xk+1 + xk = (k + 1)xk + kxk−1,
whence xk+1 = k (xk + xk−1).
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As Euler admits himself, “however, it
is not as easy” to derive (0.15) from (0.14).
Therefore, we first prove formula (0.16) as-
suming (0.14) by induction, where the in-
duction step for k ∈ N reads

xk+1 = k(xk + xk−1)

= (k + 1)!(
k−1
∑
`=0

(−1)`
`!
+ (−1)

kk

(k + 1)!)

= (k + 1)!
k+1
∑
`=0

(−1)`
`!

.

Finally, the implication “(0.16) ⇒
(0.15)” is trivial.

Exercise 0.4 103910 = 100000011112 and

1110 = 10112, such that every bit of 11 is
smaller than or equal to the corresponding
one of 1039 and therefore (1039

11
) is odd ac-

cording to (0.8).

Exercise 0.5 Employ Fleury’s algorithm:
start in a vertex of odd degree, A say, avoid
using a bridge (edge) that separates the re-
maining graph into two components, and
delete used edges. For example:
ABCDABDAC.

Exercise 0.6 We can employ Fleury’s al-
gorithm for the graph in Figure A.1, whose
vertices are all even. Starting with edge a,
we follow Fleury to get the trail abcdef,
here denoted by the labels of the edges.

f

a

b

c

d

e

Figure A.1: Muhammad’s sign manual as a graph

Exercise 0.7 We will describe the algo-
rithm informally. To check an edge ab for
being a bridge in G, we search for a path
from b to a in G − ab. Starting in b, we
screen all neighbors of b, then neighbors of
neighbors and so on, but skipping those al-
ready encountered. (Since we stay as close
to the root b as possible, this is called a
breadth-first search (BFS)). The result is a
tree rooted in b and spanning its connected
component in G − ab. If a is not on that
tree, then ab is a bridge.

For a practical realization, we may
construct a queue of vertices to be checked
for their neighbors. Initially we define qv =

n ∶= ∣G∣ for all v ∈ V (G). The length ` of the
queue is put to 1 and qb = 1, such that ver-
tex b is now first in the line. Then we search
successively for its neighbors u in G − ab

which have not yet been visited, i.e. with
qu = n. If we encounter a, we stop: ab is
not a bridge. Otherwise we increase ` by 1

and put qu = `. After all neighbors of b have
been scanned, we decrease ` by 1 and also
all qu ∈ [n − 1] and restart the search for
neighbors of the first vertex v in the queue,
that is with qv = 1, as long as there is any,
i.e. ` = ∣{u ∈ V (G) ∣ qu ∈ [n − 1]}∣ ≠ 0.

Exercise 0.8 a) Coming from L T, the next
three moves are µλµ, which can be found
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twice in both equations (0.9) and (0.10),
such that there are the four solutions

L T S R Q Z B G H X W V J K F D C P N M ,
L T S R Q Z X W V J H G B C P N M D F K ,
L T S R Q Z B C P N M D F G H X W V J K ,
L T S R Q P N M D C B Z X W V J H G F K .

b) Here the triple is µλ2, occurring
only in one kind in each equation, such that
we have the two solutions

J V T S R W X Z Q P N M L K F D C B G H ,
J V T S R W X H G F D C B Z Q P N M L K .

Exercise 0.9 Let us assume that K3,3 is
planar. Since it is 2-colorable, it does not
contain any triangle. Therefore 4∣∣∣K3,3 ∣∣∣ ≤
2∥K3,3∥, such that with (0.11), we arrive at
9 = ∥K3,3∥ ≤ 2(∣K3,3 ∣ − 2) = 8, a contradic-
tion.

Exercise 0.10 Hint: Reduce problem CB
to the missionaries and cannibals problem
(MC): three missionaries and three can-
nibals want to cross the river with the
same boat as before; the cannibals must

never outnumber the missionaries on a river
bank.

Identifying women with cannibals
and men with missionaries, it is clear that
every solution of CB leads to a solution
of MC, because individuals do not play a
role in the latter and women can never
outnumber men on a bank since otherwise
a woman would be without her brother.
So if we solve MC, we only have to ver-
ify that the solution will also satisfy CB.
We will stay with the women/men nota-
tion and denote by mw a constellation of
m ∈ {0,1,2,3} men and w ∈ {0,1,2,3}
women on the bank where the boat is
present. By the jealousy condition, only
10 of the 16 combinations are admissi-
ble: 00, 01, 02, 03, 11, 22, 30, 31, 32, 33. Of
these 00 (no transfer possible), 01 (can only
be reached from 33 and leads back there)
and 30 (more women than men on the other
bank after transit) can be excluded imme-
diately. The remaining 7 constellations lead
to the graph in Figure A.2, whose edges
are boat transfers labelled with the passen-
ger(s).

33

02

11

32 03 31 22

ww

mw

w

m

ww w mm
mw

Figure A.2: The graph of the missionaries and cannibals problem

Note that this graph contains a loop at ver-

tex 22. Quite obviously, there are precisely

four optimal solutions of length 11. One of

the solutions has been given in Latin verses

(cf. [265, p. 74]):

Binae, sola, duae, mulier, duo, vir mulierque,

Bini, sola, duae, solus, vir cum mulier.

In fact, all solutions lead to solutions
of (CB), where now individual identities
increase the number of different solutions.
For instance the transfer 33 → 02 can be
performed with any of the three pairs of
women, whereas the reverse transfer has
to be done with the only pair present. A
combinatorial analysis of all cases based
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on Figure A.3 leads to 486 solutions alto-
gether. It seems that this number has never
been given in the abundant literature of the
problem.

Variations include higher numbers of
couples and (remember Königsberg!) an is-

land in the middle of the river; cf. [265].
The problem has also been employed as an
example for problem representations, i.e.
models, in the Artificial Intelligence liter-
ature; cf. [12].

3

3

1 2
2

1 3 3 1 1 1

2

1 1
1

Figure A.3: Numbers of alternatives in the careful brothers problem

Chapter 1

Exercise 1.1 The two pendant vertices are
the end-vertices of a path. By the Hand-
shaking lemma the rest of the vertices form
a union of cycles.

Exercise 1.2 The path of length 2n − 1

from α(n) to ω(n) in Rn can be dissected
into the two paths from 0n to 1n and from
1n = 11n−1 to ω(n) = 10n−1 of lengths βn

and βn−1, respectively.

Exercise 1.3 In every move precisely one
bit is switched. This yields the vertex col-
oring. It can be proved by induction that
moves of type 0 and 1 are alternating along
a shortest path from α(n) to ω(n), obviously
starting and ending with move type 0.

Exercise 1.4 a) The state graph is con-
structed by adding edges {s00, s11} with
s ∈ Bn−2 to Rn, just like the red edges in
Figure A.4.

000 100001 011 010 101110 111

Figure A.4: The graph R3 with double moves (red edges)

b) We may define the graph R̃n from the
previous graph by deleting all vertices of
the form s01, because they subdivide the
new edges. It is a path graph again, whose
length is 2n −1+2n−2 −2 ⋅2n−2 = 3 ⋅2n−2 −1.
c) As in (1.2), we have β̃1 = 1, ∀n ∈ N ∶

β̃n+1 + β̃n = 3 ⋅ 2n−1 − 1. For γn ∶= 2n−1 − β̃n

this means that γ1 = 0 and ∀n ∈ N ∶ γn+1 =
1 − γn, whence

β̃n = 2n−1 − (n even) .

Appendix A. Hints and Solutions to Exercises
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Exercise 1.5 Hint: (2n−1) mod 3 = n mod

2. For n = 0, C = V and ∣C ∣ = 1. For
n ∈ N, either 0n or 0n−11 is a codeword.
Consequently, the codewords are those ver-
tices s ∈ Bn with d(s) mod 3 = 0 or 1, re-
spectively. From the hint it follows that for
even n necessarily α(n) and ω(n) are code-

words and that ∣C ∣ = 1

3
(2n + 2); for odd n

there are two perfect codes, containing ei-

ther α(n) or ω(n) and with ∣C ∣ = 1

3
(2n + 1).

Exercise 1.6 We are looking for the state
s ∈ B14 which lies on the path R14 between
114 and 014 at a distance 9999 from the for-
mer. Since β14 = d(114, s)+d(s,014), we get

d(s,014) = ⌈2
3
(214 − 1)⌉ − d(114, s)

= 10922 − 9999 = 923
= 000011100110112 .

We can now apply the Gray code au-
tomaton in Figure 1.4 which yields s =
00001001010110. Therefore, rings 2, 3, 5,
7, and 10 are on the bar, all others are off.

Exercise 1.7 Obviously, W (P1) = 0, and
for a pendant vertex e of Pk, k > 1, we have

W (Pk) = ∑
v∈V (Pk)

d(e, v) +W (Pk−1)

=∆k−1 +W (Pk−1) = (k
2
) +W (Pk−1) .

Comparing this with Exercise 0.2(c), we re-
alize that W (Pk−1) fulfills the same recur-
rence as (k

3
), such that W (Pk) = (k+13 ).

Exercise 1.8 Write k = 2r(2s + 1), r, s ≥ 0.
Then observe that in the binary representa-
tion (bnbn−1 . . . b1b0)2 of k we have b0 = b1 =
⋯ = br−1 = 0 and br = 1. Hence g̃k = r. Since
by Corollary 1.11, gk = r+1, the conclusion
follows.

Exercise 1.9 The recursion for q follows
immediately from the binary representa-
tion of k. But then gk = q(k − 1) − q(k) + 2,
because the right-hand side fulfills the re-
cursion of the Gros sequence in Proposi-
tion 1.10. Summing g̃k = q(k − 1) − q(k) + 1
from 1 to n yields Legendre’s formula.

Exercise 1.10 Hint: Starting at 0n, walk
along the edges of the cube by switching
bgk in the k-th step for k ∈ [2n − 1]. This
path will end in 0n−11, corresponding to a
corner of the n-cube which is linked to our
starting corner by an extra edge.

Exercise 1.11 We will show that Corol-
lary 1.11 remains valid with g replaced by
a. We first claim that for any r ∈ N0, (i)
a2r = r + 1, and that (ii) ak < r + 1 for any
k < 2r.

We proceed by induction on r, the
cases r = 0 and r = 1 being trivial. Let
r ≥ 2 and suppose that a2r−1 = r and that
the terms before a2r−1 are smaller than r.
The 2r−1 − 1 terms after the term a2r−1

constructed by the greedy algorithm coin-
cide with the first 2r−1 − 1 terms of the
sequence. Indeed, if we would construct a
square, it would not contain a2r−1 because
by the induction hypothesis the terms be-
fore it are smaller. So a square would
have to appear before (or, equivalently, af-
ter) a2r−1 , which is not possible. Hence we
have a sequence containing (2r−1 − 1) +
1 + (2r−1 − 1) = 2r − 1 terms of the form
1,2, . . . ,1, r − 1,1,2, . . . ,1, r,1,2, . . . ,1, r −
1,1,2, . . . ,1. Now we see that a2r = r+1, for
otherwise a square would be constructed.
Moreover, the above argument also implies
part (ii) of the claim.

Suppose now that k = 2r(2s + 1),
where s ≥ 1. Let t ∈ N be selected such that
2t < k < 2t+1. To show that ak = r + 1 in
this case too, we proceed by induction on
t, where the case t = 1 is straightforward.
So let t ≥ 2. Then by the above, ak = ak−2t .
Since k − 2t = 2r(2s + 1) − 2t = 2r((2s + 1) −
2t−r) and (2s + 1) − 2t−r is odd, the induc-
tion hypothesis implies ak−2t = r + 1. But
then ak = r + 1 as well.

As an alternative, we may prove
Proposition 1.12 by using induction on l ∈
N to show that a2l−1 = 1, a2l = al + 1

(cf. Proposition 1.10).

Exercise 1.12 Hint: Use the fact that g is
the greedy square-free sequence and argue
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that g is also the greedy strongly square-
free sequence.

Chapter 2

Exercise 2.1 Observe that for any r, s ∈
Tm, r ≠ s, rTn−m ∩ sTn−m = ∅. The rest
follows from the fact that sTn−m is the set
of regular states with the largest m discs
fixed in distribution s.

Exercise 2.2 We may assume that the
transfer of the tower is from peg 0 to peg 2.
Replace the induction step in the proof of
Theorem 2.1 by the following argument.
Before the first move of disc d, to peg i,
say, state 0n−d0(3 − i)d−1 must be reached
moving only discs from [d − 1] in the min-
imum number of moves, which by (strong)
induction assumption is 2d−1 − 1.

The statement about the last step fol-
lows by symmetry, since every minimal so-
lution from 0n to 2n is a minimal solution
from 2n to 0n taken in inverse move order.

The statement about the disc moved
in step k in Theorem 2.1 then follows a pos-
teriori from another characterization of the
Gros sequence reflecting the corresponding
property of the Gray code, namely

∀n ∈ N0 ∶ g2n = n + 1,
∀k ∈ [2n − 1] ∶ g2n+k = g2n−k .

This, in turn, is an easy consequence of
Corollary 1.11.

Exercise 2.3 Hint: Use the recursive solu-
tion of the problem and induction.

Exercise 2.4 Hint: Start with h.

Exercise 2.5 Let us assume that disc n

and all discs of the same parity are made
of gold, the others from silver. Moreover,
the bases of pegs 0 and 2 should be silver,
that of peg 1 golden. Then, apart from the
divine rule, of course, follow just two com-
mandments:

(o) Never undo the move just made.

(i) Never place a disc onto a disc or
base of the same metal.

Rule (o) is obvious for a shortest so-
lution path and was the only rule to be fol-
lowed to get from α(n) to ω(n) in the CR.
Rule (i) will guarantee by Proposition 2.3
that you stay on the optimal path.

Exercise 2.6 Let bn, n ∈ N0, be the number
of legal arrangements on the source peg i in
the optimal solution with n discs. Note that
bn is at the same time the number of legal
arrangements of discs on the goal peg j.
Then b0 = 1 = F2 and b1 = 2 = F3. For
n ≥ 2, we first move discs 1 to n − 1 onto
the intermediate peg 3− i− j, yielding bn−1
arrangements on the source peg. After disc
n is moved to the goal peg, discs 1 to n− 2
are moved from peg 3− i− j to peg i, yield-
ing bn−2 arrangements on the source peg.
Now prove that these two sets of arrange-
ments are disjoint and observe that after
that no new arrangement on the source peg
is obtained. It follows that bn = bn−1 + bn−2.
The argument is completed by the fact that
an = bn−1.

A second proof can be based on
Proposition 2.3. By that result, bn is also
the number of admissible arrangements on
peg i. Now let ν ∈ N0. If n = 2ν, then peg i is
either empty (we only count movable discs)
or the bottom disc is 2k + 2, k ∈ [ν]0, lead-
ing to b2k+1 admissible arrangements on i,
i.e.

b2ν = 1 +
ν−1
∑
k=0

b2k+1. (A.1)

If n = 2ν+1, then again peg i is either empty
or the bottom disc is 2k + 1, k ∈ [ν + 1]0,
leading to b2k admissible arrangements on
peg i, i.e.

b2ν+1 = 1 +
ν

∑
k=0

b2k. (A.2)

From (A.1) it follows that b2ν + b2ν+1 =
b2ν+2, and from (A.2) we get b2ν+1 +b2ν+2 =
b2ν+3, i.e. the recurrence relation of the Fi-
bonacci sequence is satisfied by (bn)n∈N0

.

Appendix A. Hints and Solutions to Exercises



272 Appendix A. Hints and Solutions to Exercises

(In fact, (A.1) and (A.2) correspond to
an equivalent characterization of that se-
quence; cf. [213, p. 5].)

Exercise 2.7 The proof is by induction on
n. The case n = 1 is clear. Let n ∈ N. Then
disc n+ 1 moves by (j − i)mod 3 only once
in move number 2n. Before that move, disc
d ∈ [n] is relocated in moves (2k + 1)2d−1,
k ∈ [2n−d]0, by

(((3 − i − j) − i) ((n − d)mod 2 + 1))mod 3

= ((i − j) ((n − d)mod 2 + 1))mod 3

= ((j − i) (((n + 1) − d)mod 2 + 1))mod 3

from induction assumption. Similarly for
the moves after the largest disc’s move,
when k ∈ [2n+1−d]0 ∖ [2n−d]0.
Exercise 2.8 We assume the initial nee-
dle to be 0, the goal to be 2. The age of
the universe (in moves) can be determined
if we know the state s ∈ T 64 of the Tower
of Brahma after the current move of disc δ.
If δ ≠ 1, this move takes place between the
two pegs which are not occupied by disc 1,
and by Proposition 2.4 the parity of δ de-
cides on the direction of the move. If δ = 1,
we know that d(s,0n) has to be odd. Al-
though we do not know the value of s1, we
can run the recursion in (2.5) down to d = 2
and put `0 = 1.

Disc 58, being even, necessarily moves
from 0 via 2 to 1. Therefore the goal of the
current move is needle 1 because disc 1 lies
on needle 0. Therefore, sd = (d = 59) + (d =
58) and application of (2.5) yields that the
move number is 258 + 257 (one may coun-
tercheck with equations (2.3) and (2.4)),
such that the age of the universe is about
13.7 billion years. (Note that this is in
amazingly good agreement with the present
knowledge of cosmology! So it seems that
the Brahmins have not yet touched disc 60

and that the universe will survive for a
while.)

Exercise 2.9 The task is to get from state
01210021 to perfect state 18. We apply Al-
gorithm 10, starting with k = 1 correspond-
ing to the goal peg. Each of the discs, ex-

cept disc 5, leads to a change of state of the
P1-automaton of Figure 2.6, such that the
algorithm returns δ = 1 and µ = 239; it ends
in state 2. Hence we know that the minimal
solution has length 239 and starts with the
move of disc 1 from peg 1 to peg 0. There-
after, one can use the statement of Propo-
sition 2.9 to obtain the rest of the optimal
path.

Exercise 2.10 a) Apply Algorithm 10
for i and j, i.e. on two copies if the P1-
automaton, starting one in state i, the
other in state j. Then, as long as sd = k,
the states of the automata will just be
switched and 2d−1 be added to µ. As soon as
sd ≠ k, however, only one of the automata
will change its state and add 2d−1 to µ. This
can not be compensated during the rest of
the performance.

b) The initial state is s = 0n1n, and
the result will depend on the parity of n.
If either n is odd and the goal peg is 1 or
n is even and the goal is 2, then the P1-
automaton changes its state with every in-
put of an sd, such that all in all 4n−1 moves
are necessary. Otherwise, the automaton
stays in the same state after the inputs from
the n largest discs, such that only 4n − 2n
moves are necessary. Quite obviously, the
distance of s to the perfect state 02n is just
2n − 1.
Exercise 2.11 Moving one step from s to
t, say, s and t differ in precisely one tit:
sd ≠ td. But then d(s, kn) and d(t, kn) can
differ by at most 1, and by Lemma 2.8 they
cannot all be pairwise equal. The rest fol-
lows from Proposition 2.13 as applied to s

and t, respectively.

Exercise 2.12 We may assume that j =
1. Then, by Proposition 2.13, d(s,0n) +
d(s,2n) = 2n − 1. Hence s lies on the short-
est path from perfect state 0n to perfect
state 2n. There are 2n such states.

Exercise 2.13 The number of moves can be
obtained from Proposition 2.19 as the value
of y8, which is 182. This number can also
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be found by applying the P1-automaton to
the task to get from (01)4 to 28. We can-
not use the information about the idle peg
for this task directly, because we are deal-
ing with the inverse task. However, since
disc 8 will only move once from peg 1 to
peg 0, the optimal solution will start with
the transfer of a 7-tower from 1 to 2, which
means that disc 1 is moved to peg 2 at the
beginning. The rest of the solution should
also be clear.

Exercise 2.14 By the definition of TH it
follows easily that the perfect states are of
degree 2 and all the other vertices are of
degree 3.

Exercise 2.15 We may, of course, assume
that n ∈ N. The vertices can be colored
with colors 0, 1, and 2 according to Propo-
sition 2.21. Each of the 3n−1 subgraphs in-
duced by the three vertices s0, s1, and s2

with s ∈ Hn−1
3 (they are isomorphic to the

complete graph K3) can obviously be to-
tally colored with colors 0, 1, and 2, re-
specting the vertex colors already assigned.
For n > 1, the remaining edges, representing
moves of discs 2 to n, can then be colored

using color 3.

Exercise 2.16 One way to prove this
is to combine the Handshaking lemma
with Exercise 2.14. Other approaches are
to solve the recurrence ∥H0

3∥ = 0, ∥H1+n
3 ∥ =

3(∥Hn
3 ∥ + 1), stemming from (2.10), or to

use (2.9) directly.

Exercise 2.17 a) The proof is by induction
on n, the case n = 1 being obvious. For the
induction step note first that any hamilto-
nian path from 11+n to 21+n cannot use the
edge between 10n and 20n. But then the
hamiltonian path is obtained uniquely from
induction assumption, putting together the
unique hamiltonian paths on 1Hn

3 , 0Hn
3 ,

and 2Hn
3 , respectively. As an illustration,

the three hamiltonian paths between i4 and
j4, i ≠ j, can be seen in Figure 2.10 by delet-
ing the edges colored like vertex (3− i−j)4.
b) Hint: Use part (a). In Figure A.5, follow
the 27(!) letters of the English alphabet on
the graph H3

3 .

c) Clearly, H0

3 and H1

3 are eulerian. All the
others are not even semi-eulerian, because
there are 3n−3 > 2 vertices of odd degree 3.
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Figure A.5: Hamiltonian labelling of H3
3
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Exercise 2.18 Let an ∶= ∣An∣ and cn ∶= ∣Cn∣.
By construction, a0 = 0 and c0 = 1. More-
over,

an+1 = an + 2 ((n even)an + (n odd)cn) ,
cn+1 = cn + 2 ((n even)an + (n odd)cn) ,

such that in particular cn+1−an+1 = cn−an,
whence cn = an + 1. Therefore,

an+1 = an + 2((n even)an

+ (n odd)(an + 1))
= 3an + 2(n odd) .

It follows that

an = 2
n−1
∑
k=0

3
k(n − 1 − k odd)

=
n−1
∑
k=0

3
k (1 − (−1)n−1−k)

and consequently

an = 3n − 1
2
− 3n − (−1)n

4

= 1

4
(3n − 2 + (−1)n)

and cn = 1

4
(3n + 2 + (−1)n).

A more direct proof can be based on
the fact that the number of perfect states
which are codewords is 2 + (−1)n. Each
of them covers 3 vertices, while the non-
perfect codewords cover 4. So we only have
to solve the equation

(2 + (−1)n) ⋅ 3 + (cn − (2 + (−1)n) ⋅ 4 = 3n.

Exercise 2.19 a) Any matching of H1+n
3 is

the union of matchings of Hn
3 or graphs ob-

tained from Hn
3 by deleting perfect states.

In Figure A.6 one can find all possible con-
figurations depending on the number of
connecting edges included in the match-
ing, the two middle ones occurring in three
symmetric versions each; the little trian-
gles represent copies of matchings of Hn

3

with perfect states deleted shown as un-
filled dots.

We get the following recurrence rela-
tion for the numbers mn of matchings of
Hn

3 , depending on the number `n of match-
ings of Hn

3 with one, kn with two, and jn
with three perfect states deleted:

m1+n =m3

n + 3mn`
2

n + 3`2nkn + k3

n .

In turn, a matching of an H1+n
3 with

two perfect states deleted will also always
be composed as in Figure A.6, which now
has to be read with the two lower perfect
states deleted. The remaining unsymmetric
cases are shown in Figure A.7.
This leads to

k1+n =mn`
2

n +mnk
2

n + 2kn`2n
+ k3

n + 2jnkn`n + j2nkn ;

similar arguments yield two more equations
obtained by interchanging m with j and k

with ` simultaneously. The seeds of this re-
currence are m0 = 1 = l0, k0 = 0 = j0.
b) The recurrence for the number of respec-
tive perfect matchings is the same as for
matchings in general, except for the seeds,
which are m0 = k0 = j0 = 0, l0 = 1. Obvi-
ously, mn = 0 = kn for all n, because the cor-
responding graphs are of odd order. There-
fore the recurrence reduces to

`1+n = jn`2n + `3n ,

j1+n = j3n + `3n .

Since `1 = 1 = j1, we see that `n = jn
for all n ∈ N. So we are left with solving the
recurrence

`1 = 1, ∀n ∈ N ∶ `1+n = 2`3n .

It is obvious that `n = 2λn with the se-
quence (λn)n∈N fulfilling λ1 = 0 and λ1+n =
3λn + 1. By Lemma 2.18, we get λn =
1

2
(3n−1 − 1), whence `n = 1√

2

6
√
2
3
n

. (Note

that λn = 1

3
∥Hn−1

3 ∥; cf. Exercise 2.16.)
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Figure A.6: Composing matchings for H1+n
3

Figure A.7: Composing matchings for a reduced H1+n
3

Exercise 2.20 By definition, for any two
vertices s̄ and t̄ of H∞3 , there is an n ∈ N0,
such that s̄ = 0∞s, t̄ = 0∞t, s, t ∈Hn

3 . Hence
there is a path between s and t in Hn

3 and
consequently there is a (finite) path be-
tween s̄ and t̄ in H∞3 .

Exercise 2.21 From the formula in Propo-
sition 2.27 we see that ε(is) becomes min-
imal, if d(s, in) − d(is) gets maximal. Re-
mark 2.12 tells us that d(is) = 0⇔ s = in,
in which case ε(i1+n) = 2n+1 −1. Otherwise,
ε(is) ≥ 2n+1 − 1 − 1

2
(2n − 1 − 1) = 3 ⋅ 2n−1.

The latter value is strictly less than 2n+1−1
for n > 1 and then attained only for ver-
tices is with d(s, in) = 2n − 1 and d(is) = 1.
Since s ∈ Tn is uniquely determined by the
two values d(s, in) and d(s;k, j), there are
precisely 6 vertices fulfilling this, namely
ijin−1, i, j ∈ T, i ≠ j.

The periphery of H1+n
3 consists of

those vertices is for which, without loss
of generality, d(s, in) = d(s;k, j), or
d(is, j1+n) = 2n+1 − 1, i.e. all vertices which
have maximal distance to one of the per-
fect states. For n ≤ 1, center and periphery
coincide.

Exercise 2.22 By definition of zn(µ) for a
fixed n, every s ∈ Tn is counted for exactly
one µ ∈ Z, which proves the first equation

in Lemma 2.29.

The second equation follows immedi-
ately from this and (2.23).

Let an ∶= ∑
µ∈N

µzn(µ). Then, by (2.20),

a0 = 0 and

an+1 = ∑
µ∈N

µzn+1(µ)
= ∑

µ∈N
µ (zn(µ − 2n) + zn(µ) + zn(µ + 2n))

= ∑
µ∈N
(µ < 2n)µ (zn(µ − 2n) + zn(µ))

+ 2nzn(0) + ∑
µ∈N
(2n < µ)µzn(µ − 2n)

= ∑
µ∈N

µzn(µ) + 2n ∑
µ∈Z

zn(µ) = an + 6n ,

where use has been made of (2.23).
Lemma 2.18 yields the third identity in
Lemma 2.29.

Exercise 2.23 We first remark that by an
easy induction argument it follows from ei-
ther (2.27) or (2.28) that ∀n ∈ N0 ∶ b(2n) =
1.

Now assume that (2.27) holds. Then
b(2) = b(1) by the previous statement and
from case n = 1 of (2.27) we have b(3) =
b(1) + b(1) = b(1) + b(2). Let (2.28) be true
up to ν − 1 ∈ N. Since we may assume that
2n < 2ν < 2n+1 for some n ∈ N, we have

Appendix A. Hints and Solutions to Exercises
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2n−1 < ν < 2n. Then

b(2ν) = b(2n+1 − 2ν) + b(2ν − 2n)
= b (2(2n − ν)) + b (2(ν − 2n−1))
= b(2n − ν) + b(ν − 2n−1)
= b(ν) .

Similarly,

b(2ν + 1) = b (2n+1 − (2ν + 1))
+ b ((2ν + 1) − 2n)

= b (2(2n − (ν + 1)) + 1)
+ b (2(ν − 2n−1) + 1)

= b (2n − (ν + 1)) + b(2n − ν)
+ b(ν − 2n−1) + b ((ν + 1) − 2n−1)

= b(ν) + b(ν + 1) ,
where we note that the equations in (2.28)
are trivially valid for ν = 0.

Now assume that (2.28) holds. The
case n = 0 is clear. Let (2.27) be valid up to
n − 1 ∈ N0 and let 2n < ν < 2n+1. If v = 2µ,
then 2n−1 < µ < 2n and we get

b(ν) = b(2µ) = b(µ)
= b(2n − µ) + b(µ − 2n−1)
= b(2n+1 − ν) + b(ν − 2n) .

For ν = 2µ+1, where 2n−1 ≤ µ < 2n, we have

b(ν) = b(2µ + 1) = b(µ) + b(µ + 1)
= b(2n − µ) + b(µ − 2n−1)
+ b (2n − (µ + 1)) + b ((µ + 1) − 2n−1)

= b (2(2n − (µ + 1)) + 1)
+ b (2(µ − 2n−1) + 1)

= b(2n+1 − ν) + b(ν − 2n) .

Exercise 2.24 We show by induction on
n ∈ N0 that the inequality is true if x and y

lie in the union σn of all constituting subtri-
angles of side-lengths greater than or equal
to 2−n; it then follows for the remaining
pairs by continuity. If n = 0, the points x

and y lie on the triangle with side-lengths 1.
Among the corners of that triangle choose

z such that the triangle xzy has a 60○ an-
gle at z. Let a ∶= ∥x − y∥, b ∶= ∥x − z∥, and
c ∶= ∥z − y∥. Then, by the cosine theorem,
a2 = b2+c2−2bc cos(60○) = b2+c2−bc. It fol-
lows that 4a2 = (b+c)2 +3(b−c)2 ≥ (b+c)2,
whence 2a ≥ b + c. Now d(x, y) ≤ d(x, z) +
d(z, y) = ∥x − z∥ + ∥z − y∥ ≤ 2∥x − y∥.

For the induction step we look at the
straight line section between the two points
x and y on σn+1. Starting in x let x̃ be the
first point on σn (if any) and ỹ the last
point on σn before we reach y (if any). Then
for the (at most) one segment between x̃

and ỹ we can use the induction assump-
tion, and the remaining segments can be
treated like the case n = 0, just in a smaller
triangle.

If we choose x and y to be the center
points of two sides of the middle triangle,
i.e. the one to be added in the step from
n = 0 to n = 1, then d(x, y) = 1

2
= 2∥x − y∥.

Exercise 2.25 By isomorphy, the number
we are looking for is equal to the number
of states which are at a distance of µ from
a perfect state of the TH. So the statement
follows immediately from Proposition 2.16.

An alternative proof can be based on
(0.8); this was Glaisher’s argument in [111,
p. 156].

Exercise 2.26 As b(ν) is the number of odd
entries in the νth subdiagonal of AT mod 2,
all entries of which add up to the Fibonacci
number Fν , b(ν) is even if and only if Fν

is (cf. Figure 2.26). From the recurrence for
the Fibonacci numbers it is easy to see that
this is the case if and only if 3 divides ν.

Chapter 3

Exercise 3.1 As the start vertex take the
state σ = 1 . . . (n − 2)n (n − 1) ∣ ∣ from
Remark 3.4. Then we have seen in this
remark that it takes 2n−2 moves to get
disc n away from peg 0. After this first
move of the largest disc the state is ei-
ther n − 1 ∣ n ∣ 1 . . . n − 2 = 102n−2 or
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n − 1 ∣ 1 . . . n − 2 ∣ n = 201n−2 . If we choose
t = 0n as the target state, then it is clear
that disc n has to be moved (at least twice)
if we want to get from σ to t, and from
formula (2.8) we deduce that the distance
from the intermediate state to t is 2n − 1.
Exercise 3.2 Hint: Assume that n ≥ 3 and
distinguish three cases for the initial state

σ ∈ V (Ð→Hn
3 ):

• Disc n lies on bottom of tn.

• sn ≠ tn and either sn−1 = 3−sn−tn
or n does not lie on bottom of sn.

• sn ≠ tn, sn−1 ≠ 3 − sn − tn, and n

lies on bottom of sn.

Make use of Lemma 3.2 and Theorem 3.5.

Exercise 3.3 The optimal solutions are, re-
spectively,

53 ∣ ∣421 4Ð→ 3 ∣124 ∣5 = 21011 7Ð→ 21
4
,

53 ∣ ∣421 1Ð→ 3 ∣5 ∣421 6Ð→ 1234 ∣ ∣5 = 204 15Ð→ 21
4
,

53 ∣ ∣421 1Ð→ 3 ∣5 ∣421 2Ð→ 5 ∣ ∣3421 6Ð→ 21
4
.

The figures on top of the arrows indi-
cate the move numbers of the intermediate
steps. So the lengths of the respective paths
are 11, 22, and 9. It turns out that the path
where disc n moves from peg 0 to 1, back to
0, and finally to its goal peg 2 represents the
unique optimal solution. This shows that
they do come back (cf. Lemma 2.26)!

Exercise 3.4 We are asked to get from σ =
6 3 8 ∣ 4 1 7 9 2 ∣ 10 5 ∈ T10 to 210 ∈ T 10

in
Ð→
H10

3 , which is a special case task. There-
fore, in the first call of Algorithm 13, n′ is
identified to be 9, such that ν = 0 and con-
sequently i = sp(σ) = 0, k = 1. The best
buffer disc b is

bb (1;D(0),10↑) = bb (1;{3,6,8},∅) = 9
such that a recursive call of the algo-
rithm is made for the standard case task
6 3 8 ∣ 4 1 7 ∣ → ∣ 1 3 4 6 7 8 ∣ , where j = 1,
i = 0, and k = 2. Here the best buffer is

bb (2; 8↑,D(1)) = bb (2;{3,6},{1,4,7}) ,

i.e. the bottom of peg 2 and a recursive
call is made for the task 6 3 ∣ 4 1 7 ∣ →
∣ ∣ 1 3 4 6 7 . This, in turn, is a standard
case task which the algorithm analogously
solves in 12 moves. Then disc 8 moves from
peg 0 to 1 and another recursive call is
made for ∣ ∣ 1 3 4 6 7 → ∣ 1 3 4 6 7 ∣ , which
is equivalent to a regular P0-type task for
5 discs, needing 31 moves.

Back in the main loop after 44 moves,
disc 10 is transferred from peg 2 to 0 and
another best buffer disc

b
′ = bb (1;∅,D(2)) = bb (1;∅,{5}) = 6

is chosen, leading to a recursive call for
∣ 1 3 4 ∣ 5 → ∣ 1 3 4 5 ∣ , a regular task
equivalent to 2111 → 14, taking 15 moves.
Move 61 is now made by disc 10 from 0

to 2. Finally, the algorithm is called again
for ∣ 1 3 4 5 6 7 8 9 2 ∣ → 29, a stan-
dard case P3 task which is solved similarly
by the algorithm taking another 382 moves,
the relatively large number stemming from
the fact that intermediate states are much
more regular by now. Altogether 443 moves
have been made. (A path using peg 1 in-
stead of the special peg for the intermediate
move of disc 10 takes at least 710 moves.)

Exercise 3.5 The upper bound follows im-
mediately from Theorem 3.5. For the lower
bound, note that for 1/12 of all states we
have sn−1 = j = sn with disc n above disc
n − 1. In these (special) cases, a perfect
(n− 1)-tower must be moved after the sec-
ond move of disc n, which takes precisely
2n−1 − 1 moves of discs from [n − 1].

Numerical experiments (cf. [102,
Tabelle 4]) indicate that dn ≈ a ⋅2n for large
n with an a between 0.3 and 0.4.

Chapter 4

Exercise 4.1 The vertices in question are
shown in Figure A.8. With the aid of the
H3-to-S3 automaton one finds that the

Appendix A. Hints and Solutions to Exercises
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start vertex corresponds to 0110 in Sier-
piński labelling. Similarly, the goal vertices
in (a) to (c) transform into 2100, 2212, and

2211, respectively. For (d) it suffices to en-
ter the first two tits, leading to 20 ∗ ∗ ; for
(e), the first three tits become 211∗ .
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1120 11221110

1221 1220

1210

1211
12121202

1200

1201

1002

10011021

1012

1011

1010

1020

1022

2111

22222000

2112

2102

2100
21012121

2120

2122

2110

2221

222022102211

2212

2202

2200

2201

2002

2001

2021

2012 2011

2010

2020

2022

01110222

0000

011201020100

0101

0121 0120

0122

0110

0221

0220

0210

0211

0212

0202

02000201

0002 0001

00210012

0011
0010 0020

0022

Figure A.8: Graph H4
3 for the tasks in Exercise 4.1 with the starting vertex in

green, the goal vertices in red

The first pair of input (0,2) defines the
P2-decision automaton, namely with i = 0,
j = 2, and k = 1. Entering the other pairs
leads to the states with the corresponding
capital letter, such that for (a) and (d), disc
4 moves once only, for (c) and (e) it has to
move twice and for (b) there are two opti-
mal solutions including one or two moves
of the largest disc, respectively.

For tasks involving a relatively small
number of discs, one might, of course, find
the type of solution easily by an inspection

of the corresponding graph. In Figure A.8
the set of those goal states which need two
moves of disc 4 to be reached from the green
vertex 0220 is highlighted in the lower right
subgraph; on the green line next to that
area one can find the only two goal vertices
with two shortest paths from 0220.

Exercise 4.2 If tn+1 = i, then disc n + 1 will
not move at all. If tn+1 = k, then we have
to use Romik’s P2 decision automaton in
Figure 2.27 with letters j and k switched
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and we will always end up in state D. If
tn+1 = j, then we employ the automaton as
it is and realize that, although we might
reach state B eventually if the pair (k, k)
is to be entered, the j in the first position
of all subsequent input pairs will never lead
to either C or E.

By isomorphy, non-perfect initial
states exist for the TH as well such that
all tasks can be solved optimally with at
most one move of the largest disc.

Exercise 4.3 Hint: Induction on n.

Exercise 4.4 For n = 1 the proposition is
trivial since S1

p is a complete graph. Let
n ≥ 2 and consider the sequence of paths
P0, P1, . . . , Pp−1, where P0 is a path be-
tween the vertices 0(p − 1)n−1 and 01n−1,
Pp−1 between the vertices (p − 1)(p − 2)n−1
and (p − 1)0n−1, and for i = 1, 2, . . . , p − 2,
Pi is a path between the vertices i(i−1)n−1
and i(i+1)n−1. We claim that the paths Pi

can be constructed in such a way that they
include all the vertices from iSn

p , i ∈ [p]0.
To prove the claim it is enough to see

that for any i, j and k, j ≠ k, there is a
path between ijn−1 and ikn−1 which goes
through all vertices from iSn

p . Obviously
that reduces the inductive argument to the
statement that jn and kn, j ≠ k, may be
connected in Sn

p by a path going through all
vertices (for all n). Without loss of general-
ity assume j = 0 and k = p−1. By the induc-
tive hypothesis we may find a path from 0n

to 01n−1 through all vertices of 0Sn
p . Add

the edge between 01n−1 and 10n−1 to the
path. By the same argument we may find a
path from 10n−1 to 12n−1 through all ver-
tices of 1Sn

p . Continue this procedure until
(p−2)(p−1)n−1 is joined to (p−1)(p−2)n−1
and a path from (p−1)(p−2)n−1 to (p−1)n
through all vertices of (p−1)Sn

p is added at
the end.

Exercise 4.5 Hint: Determine the size of a
corresponding perfect code using the fact
that every vertex of it, except possibly some
extreme vertices, cover four vertices.

Exercise 4.6 A planar drawing of S2

4 is given
in Figure A.9.

00

01

02 03

11

22 33

20 30

10

31

13

21

12

23 32

Figure A.9: Planar drawing of S2
4

Every subgraph ijS1

4 of S3

4 with i, j ∈
[4]0, i ≠ j, is isomorphic to K4. Adding
a vertex ikj with i ≠ k ≠ j it can easily
be seen from Figure 4.5 that these five ver-

tices induce a K5-subdivision in S3

4 . Hence
all Sn

4 with n ≥ 3 are non-planar and so are
Sn
p with p > 4 and n ≥ 1 since they contain

a K5.

Appendix A. Hints and Solutions to Exercises
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Exercise 4.7 Hint: Mimic the proof of
Proposition 2.22.

Exercise 4.8 First check the cases p = 1,2.
For p ≥ 3, the p-cliques sS1

p (cf. Theo-
rem 4.3) cover all vertices of Sn

p . As there
are pn−1 such cliques and each can con-
tain at most one vertex of an independent
set, α (Sn

p ) ≤ pn−1. On the other hand,
it is well-known (and not difficult to see)
that χ(G) ≥ ∣G∣/α(G); cf. [336, Proposi-
tion 5.1.7]. Since χ(Sn

p ) = p it follows that
α (Sn

p ) ≥ pn−1. (A direct argument for the
latter inequality would be to observe that
vertices of the form snsn−1 . . . s20 are not
adjacent; cf. the canonical vertex-coloring.)

Chapter 5

Exercise 5.1 Let x = 0 (red case in Fig-
ure 5.3). Then mn = ∆ν−1. For m = mn,
we have µ + (y ≠ 0) = ν − 1 < ν = n −m. If
m < mn, then µ + (y ≠ 0) < ν − 1 + 1 = ν <
n−m. For m >mn, necessarily µ = ν−1 and
y ∈ [ν −1], such that µ+(y ≠ 0) = ν −1+1 =
ν > ν − y = n −m.

Turning to the case x ≠ 0 (green in
Figure 5.3), mn has to be written as ∆ν ,
if x = ν, and ∆ν−1 + x otherwise. In the
former case we have for m = mn: µ + (y ≠
0) = ν = n −m, in the latter µ + (y ≠ 0) =
ν − 1 + 1 = ν = n − m. If m < mn, then
µ+(y ≠ 0) ≤ µ+ 1 ≤ ν < n−m. So let finally
m > mn. Then either µ = ν − 1 and y > x

or µ = ν and y ∈ [x]0. In the former case,
µ+(y ≠ 0) = ν − 1+ 1 = ν > n−m and in the
latter case µ + (y ≠ 0) = ν + (y ≠ 0) ≥ ν >
n −m.

Exercise 5.2 The case ν = 0 is trivial; for
ν = 1 it is clear that each disc moves at
least once. For ν = 2 we have n = 3 + x

discs, x ∈ [3]0, which can be transferred to
two pegs in 2(2+x)moves. But this number
is also needed, because if all discs go to one
and the same peg, then 2 + x of them have
to move at least twice, resulting in at least
2(2+x) + 1 moves. With 3+ x discs on two

pegs, 1 + x move at least twice, such that
2(1 + x) + 2 = 2(2 + x) moves are necessary.

Exercise 5.3 First select k non-empty pegs
in (p

k
) ways. Top discs for these pegs can

be selected in (n−1
k−1) ways because disc 1 is

always one of them. After the top discs are
selected, there are k! ways to assign them
to the non-empty pegs.

Exercise 5.4 This is proved by induction
on ν. Quite surprisingly, the case ν = 0

is not trivial as usual but requires another
straightforward induction on q to get

q

∑
i=0
(−2)i(q

i
) = (−1)q .

The induction step is then by showing that
both polynomials fulfill the recurrence re-
lation

P (ν + 1) = 1

2
(P (ν) + (ν + q

q
)) ,

which in turn follows from the standard
properties of combinatorial numbers.

Exercise 5.5 Let s be an arbitrary regu-
lar state and consider a sequence M of
moves in which each disc is moved at least
once. Just before disc n is moved, discs
1,2, . . . , n − 1 are on the same peg. With-
out loss of generality assume that disc n−1
is moved after the move of disc n. It fol-
lows that after the move of n, we need to
solve a P0 problem for n − 2 discs using
at least 2n−2 − 1 moves and to move disc
n−1. Together with the move of disc n, the
sequence M is of length at least 2n−2 + 1.
Hence g(3, n) ≥ 2n−2 + 1. To see that equal-
ity holds, consider the regular state 001n−2.

Exercise 5.6 Let k ∈ [p] and consider the
regular states in which exactly k pegs are
non-empty. We can select k pegs in (p

k
)

ways. The n discs can be partitioned into k

non-empty parts in {n
k
} ways, these parts

can be distributed onto k pegs in k! ways.
Hence there are exactly (p

k
) {n

k
}k! = {n

k
}pk

regular states with exactly k non-empty
pegs.
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Consider next an arbitrary regular
state with k non-empty pegs. There are
k(p − k) legal moves between non-empty
and empty pegs. Moreover, between two
non-empty pegs, exactly one move is legal.
We conclude that the degree of an arbi-
trary regular state with k non-empty pegs
is k(p − k) + (k

2
) = 1

2
k(2p − k − 1), the extra

factor 1

2
in the desired formula stemming

from double-counting of edges.

Exercise 5.7 Hint: First use induction on
n to show that there is a hamiltonian
path starting and ending in distinct per-
fect states. (Say, move disc n + 1 stepwise
from peg 0 to 1, from peg 1 to peg 2, and
so on to p − 1. Before each such move, a
hamiltonian path in the corresponding n

discs subgraph can be performed to trans-
fer the tower consisting of the n smallest
discs to a peg allowing disc n + 1 to move.
Note that this sequence visits all the states
in which disc n + 1 is on a fixed peg. Act
similarly after the last move of disc n + 1.)

Now start in the state 01n of H1+n
p and

transfer the tower of n smallest discs on
hamiltonian paths according to the above
in a cyclic fashion from peg to peg, each
complete transfer being followed by a sin-
gle move of disc n+1 to the next peg in the
same direction.

Exercise 5.8 Assume that one of the p(p−1)
non-perfect states, say 01, is a codeword.
Then 2H1

p contains no codeword, because
otherwise 21 would be covered twice. But
this means that 22 is not covered.

Being surrounded by non-codewords,
all perfect states must be codewords them-
selves. This results in a (unique) perfect
code.

Exercise 5.9 Hint: Look at the 24 flat states,
i.e. those where the three discs are dis-
tributed on three different pegs.

The subgraph of H3

4 shown in Fig-
ure A.10 is a subdivision of K3,3. Therefore,
by Kuratowski’s theorem, H3

4 is not planar.

210 102 021

012 201 120

013
312 032

231

203

301

320 130
123

213
230 310

302

103

132

031 321
023

Figure A.10: K3,3-subdivision in H3
4

Exercise 5.10 The proof of Proposition 5.40
is by induction on n. The cases n = 0

and n = 1 are clear. Now let s, t ∈ [p]n+10 ,
n ∈ [p − 2], with ∀d ∈ [n + 1] ∶ td = d − 1.
Starting in s, move as many discs as pos-
sible directly to their goal pegs. Then, by
virtue of Lemma 5.39, some peg k ≥ n + 1
is empty in the resulting state. Let d be
any top disc which is not already in its end

position. (If there is no such disc, then t is
reached and each disc moved at most once.)
Move it to peg k. Now peg d−1, the goal of
disc d, is not empty and all discs on it are
not in their end position. We may therefore
consider the task which remains after ignor-
ing pegs k and d−1 and all discs lying there.
This is a task in Hν

p−2 with ν ∈ [n]0 of the
same type as the original one. (The cases

Appendix A. Hints and Solutions to Exercises
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p = 3 and 4 can easily be sorted out.) By in-
duction assumption, this can be solved with
at most ⌊ ν

2
⌋ ≤ ⌊n−1

2
⌋ discs moving precisely

twice and all other discs moving at most
once, those in end position being fixed. All
discs on peg d − 1 can now be moved di-
rectly to their goals and finally disc d too
in its second move. The former ones there-
fore all moved precisely once, the latter one
twice; no disc in end position was moved.
Since ⌊n−1

2
⌋ + 1 = ⌊n+1

2
⌋, Proposition 5.40 is

proved.
For (a) we show that

∀s ∈ [p]n0 ∃ t ∈ [p]n0 ∶ d(s, t) ≥ n + ⌊n
2
⌋ .

For s ∈ [p]n0 let ∀d ∈ [⌈n
2
⌉]:

td = (sd + (sd = sn−d+1))mod p = tn−d+1 .

Then all discs from [n]∖[⌊n
2
⌋]move at least

once, the others at least twice, summing up
to at least n + ⌊n

2
⌋ moves.

Now ε(s) ≥ n + ⌊n
2
⌋ for every s, such

that rad(Hn
p ) ≥ n + ⌊n2 ⌋.

For (b) we deduce from Proposi-
tion 5.40 that

∃ t ∈ [p]n0 ∀s ∈ [p]n0 ∶ d(s, t) ≤ n + ⌊n
2
⌋ ,

such that there is a t with ε(t) ≤ n + ⌊n
2
⌋,

whence rad(Hn
p ) ≤ n + ⌊n2 ⌋.

Note that t and in fact all flat states
belong to the center of Hn

p if n < p. The
sequence xn = n + ⌊n

2
⌋ is [296, A032766]; it

fulfills the recurrence

x0 = 0, x1 = 1, ∀n ∈ N ∶ xn+2 = xn + 3 .

Exercise 5.11 Hint: Observe that the states
in question are precisely the states in which
disc n is alone on peg i and j is the only
empty peg. (For the sequence, cf. [296,
A180119].)

Exercise 5.12 See Figure A.11.

Figure A.11: Optimal solutions for 0233→ 3001

Chapter 6

Exercise 6.1 Hint: Observe that in any op-
timal sequence of moves, after a move of
a disc that is not one of the two smallest,
the next move must be either a move of
the smallest white disc or a move of the
smallest black disc. Also, any solution must
start and end with a move of a smallest
disc. Hence the number of moves of the

two smallest discs is at least one more than
the number of moves of all the other discs.
Then use induction to reach the required
conclusion.

Exercise 6.2 A solution making 11 moves
is presented below. By (6.2), the solution
is optimal. To distinguish the colors of the
three stacks we denote their discs by d, d′,
and d′′, d ∈ {1,2}, respectively.
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Exercise 6.3 By Theorem 6.2 it suffices to
find two different solutions with 22 moves.

Exercise 6.4 As in the case of an even num-
ber of discs, the optimal solution for the
task 1(01)n → 0(10)n can be decomposed
into the transfer of 2n smaller discs to peg
2, the single move of the extra disc to peg
0 and the sorting of the 2n-tower on 2 into
odd and even on pegs 0 and 1, respectively.
This time, the first three input pairs are
(1,0), (0,1), and (1,0) for the Hanoi la-
belling, leading to (1,0), (2,2), (0,1) in the
Sierpiński notation, such that in the P2 de-
cision automaton i = 1, j = 0, and k = 2

and again the two input pairs are (k, k)
and (j, i). Therefore, the total number of
moves is 2y2n+1 = ⌊5722n+1⌋+(n mod 3 = 2).
Putting the results together, the swapping
of the positions of N ∈ N discs, initially
sorted according to parity, needs 2yN−1+1 =
⌊5
7
2N ⌋ + (N mod 3 = 2) moves.

Exercise 6.5 Translated into the language
of the TH, the task is (01)4 → (1001)2.
Applying the H3-to-S3 automaton of Fig-
ure 4.4, this becomes 0(210)22 → (1221)2,

and Romik’s automaton in Figure 2.27 tells
us that the largest disc 8, i.e. the largest
golden disc, moves twice in the shortest
path, i.e. we have a class II task. Before the
first move of disc 8, disc 7 is not moved, be-
cause it is not in the way. Between the two
moves of disc 8, the 7-tower of smaller discs
is transferred with one move of disc 7. This
is followed by the last move of disc 8. After
that the 7-tower is decomposed into its final
distribution with no move of disc 7 because
it is already in its terminal position and
the starting configuration is perfect. Thus,
the largest silver disc moves only once, al-
though it is the “lighter” one. The shortest
path needs 208 moves.

Exercise 6.6 With the aid of the H3-to-S3

automaton of Figure 4.4 the task translates
into the task s ∶= 02020202 → 12121212 =∶ t
in S8

3 . Romik’s automaton in Figure 2.27,
with i = 0, j = 1, and k = 2 moves to state B
on the input (k, k), remains there after the
next input (i, j) and then, on (k, k) again,
changes to state E, such that disc 8 neces-
sarily moves twice. It follows that

d(s, t) = d(s,027) + 1 + (27 − 1)
+ 1 + d(127, t) = 213 .

The first sub-task is 201201 → 16 in H6

3 .
The P1-automaton in Figure 2.6 yields 1 as
the idle peg of the best first move, such that
disc 2 moves from peg 0 to peg 2. (With
only one move of the largest disc, the full
255 moves are needed; in that case, disc 1

moves to peg 2 first, such that this would
destroy optimality already.)

Exercise 6.7 Since t = 2 = r and N = 3, The-
orem 6.3 asserts that the optimal number
of moves is 29, which is indeed the length
of the given path. The sequence of moves
differs from the one produced by Algo-
rithm 20 starting from the state 217 ∣465 ∣3.
After this state disc 2 is moved while Algo-
rithm 20 moves disc 3.

Appendix A. Hints and Solutions to Exercises
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Chapter 7

Exercise 7.1 As G is hamiltonian, G−X has
at most ∣X ∣ connected components consist-
ing of the sections of an arbitrary hamilto-
nian cycle C between the removed vertices
of X. Hence if two vertices of X would be
consecutive on C, G −X would consist of
at most ∣X ∣ − 1 connected components.

For G = L, consider X as the set of
the 12 vertices of degree 4.

Exercise 7.2 a) The correspondence be-

tween s and σ is given by sn+l = l +
l

∑
k=1

σk

for all l ∈ [p+1]0. Figure A.12 refers to this
situation: on the left one can see the posi-
tions sn+k of peg bottoms dividing the set
of n (uncolored) balls, and on the right the
corresponding distribution of the balls on
the pegs is depicted.

{ { {
0=sn+0 sn+1 sn k+ -1 sn k+ sn p+ -1 s n+pn p+ =

1 k p { { {h1
hk

hp

pk1

Figure A.12: Correspondence between positions of peg bottoms and the distribu-
tion of balls

b) We have, in fact for n ∈ Z,

l
n
h = ∣{σ ∈ Np

0 ∣ σ ≤ h,
p

∑
k=1

σk = n}∣ ,

where σ ≤ h is meant componentwise,
i.e. σk ≤ hk for every k ∈ [p]. (Of course,
lnh = 0 for n < 0.) Then for p = 0 we obvi-
ously get

l
n
∅ = (n = 0). (A.3)

Moreover, if g ∈ Np
0

and α ∈ N0, then

l
n
gα =

n

∑
ν=n−α

l
ν
g ; (A.4)

this is because necessarily σp+1 = n −
p

∑
k=1

σk

and therefore
p

∑
k=1

σk runs through all (non-

negative) values from n −α to n.
With equation (A.4), we can break

down lnh recursively to a sum consisting
only of terms of the form l

µ
∅, which can then

be evaluated using equation (A.3). Explicit
formulas for lnh can only be given in specific

cases; cf. Exercise 7.3. As an example we
take the classical London graph L, where
p = 3 = n and h = 123, such that

l
3

123 =
3

∑
ν=0

l
ν
12 =

3

∑
ν=0

ν

∑
µ=ν−2

µ

∑
λ=µ−1

(λ = 0)

=
3

∑
ν=0

ν

∑
µ=ν−2

(µ ≤ 1) = 1 + 2 + 2 + 1 = 6.

c) Each σ corresponds to a distribution of
n uncolored balls on the pegs. Then there
are n! different colorings of the balls.

Exercise 7.3 a) Induction on p. For p = 1,
we have

l
n
n =

n

∑
ν=0

l
ν
∅ = 1 = (1 + n − 1

n
).

Furthermore,

l
n
np+1 =

n

∑
ν=0

l
n
np =

n

∑
ν=0
(p + ν − 1

ν
)

= (p + 1 + n − 1
n

),



285

the latter by induction on n. It follows that

∣On
p ∣ = n!(p + n − 1

n
) = (p + n − 1)!(p − 1)! .

b) Of all permutations s ∈ Symn+p only
those with sp+n = p + n are admissible,
i.e. at most ∣Symn+p−1 ∣ = (p + n − 1)!. Only
1/(p − 1)! of these fulfil the necessary con-
dition of strict monotonicity sn+1 < sn+2 <
⋯ < sn+p−1 < sn+p. But the latter also im-
plies k ≤ sn+k ≤ n + k for all k ∈ [p + 1]0,
whence 1 ≤ sn+k − sn+k−1 ≤ n + 1 for all
k ∈ [p]. Therefore the condition in Defi-
nition 7.2 is automatically fulfilled for all
remaining permutations.

Exercise 7.4 Choose q ∈ [p] pegs. The
number of states with all balls distributed
among all these pegs is, for n ≥ q,

n!

(n − q)! ∣O
n−q
q ∣ = n!(n − 1

q − 1) .

This is so because there are n!

(n−q)! choices
to fill the bottom line of balls on all q pegs,
and the remaining n − q balls can be dis-
tributed arbitrarily, such that the number
of these distributions can be taken from the
previous exercise.

Each of these states has degree q(p −
1), whence by the Handshaking lemma

∥On
p ∥ = 1

2
(p − 1)n!

p

∑
q=1

q(p
q
)(n − 1

q − 1)

=∆p−1 n!
p

∑
q=1
(p − 1
q − 1)(

n − 1
q − 1)

=∆p−1 n!
n−1
∑
λ=0
(p − 1

λ
)( n − 1

n − 1 − λ)

=∆p−1 n!(p − 2 + n
n − 1 )

( = ∆p−1 n!(p − 2 + n
p − 1 ))

= np

2

(p − 2 + n)!
(p − 2)! ,

where in the fourth step use has been made
of formula (0.6).

Exercise 7.5 a) The steps from the proof of
Theorem 7.3 are illustrated in Figure A.13.

b) Since no ball is in right position at the
start, it is clear that each one has to move
at least once and ball 3 at least twice. More-
over, an easy combinatorial analysis shows
that if ball 2 moves once only, then 4 has to
move three times and if ball 4 moves only
once, then 2 moves thrice. Therefore, an op-
timal solution needs at least 7 steps. Here
is one:

1∣2∣43 → 21∣ ∣43 → 21∣4∣3 → 1∣24∣3 →
1∣324∣ → ∣324∣1 → ∣24∣31 → ∣4∣231 .

Exercise 7.6 The lower bound follows from
1 = g (L3

222) ≤ cr (L3

222) . For the upper
bound, see Figure A.14. Better bounds are
not known so far.

Exercise 7.7 This can be done by adding all
missing vertices and their adjacent edges to
the drawing of L3

222 in Figure 7.9 without
introducing any crossings. In Figure A.15
the mixed graph of Lucas’s second problem

for 3 discs
Ð→
H 3

3 is drawn on the torus; the
underlying graph, completed by the edges
in red, is O3

3 . In fact, we know from Exer-
cise 7.4 that ∥On

3 ∥ = 3

2
n(n + 1)! = 3∆nn!

(cf. [102, Satz 3.7]). Finsterwalder noted
in [102, Satz 3.8] that 3∆n−1n! out of the
2∥On

3 ∥ arcs of the directed Oxford graph

are missing in
Ð→
Hn

3 because these moves do
not obey the divine rule; hence it has only
3

2
n(n + 3)n! arcs. Finally, ∆n−2n! edges of

O3

n, n ∈ N, i.e. 6 for n = 3, are missing in the

underlying graph of
Ð→
Hn

3 , because the cor-
responding moves do not conform with the
divine rule in both directions; hence, this
graph has (n2 + 3n − 1)n! edges (cf. [102,
Satz 3.9]).
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Figure A.13: Solution for 1 ∣2 ∣43→ ∣4∣231 in L4
234

Exercise 7.8 Let us first determine the fixed
points for the action of (Γ33, ⋅ ,133) on
V (L3

222). Apart from the identity 133, only
“flat” distributions of the three balls can
lead to a fixed point, and they can only be

a fixed point of (χ,π) if both χ and π are
rotations (derangements) or both are reflec-
tions. The distribution of fixed points to the
group elements is shown in Table A.1.
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|2|13

1||23

1|2|3

13|2|

21|3|

|12|3

21||3

23||1

1|23|

3|12|

3|2|1

1|3|2

1|32|

31|2|

|32|1

31||2

3||21

|3|12

|2|31

1||32

2||31

|1|32

32||1

|31|2

2|31|

32|1|

|3|21

|23|1

3||12

13||2

2|13|

12|3|

3|21|

12||3

|21|3

2|1|3

3|1|2

2|3|1

2||13

|1|23

|13|2

23|1|

Figure A.14: The graph L3
222 with 8 crossings in the plane

We can read the following from that
table. The sum of the sizes of the fixed
point sets is

∑
g∈Γ33

∣V (L3

222)g ∣ = 42 + 4 × 3 + 9 × 2 = 72 ,

such that Burnside’s lemma Corollary 0.9
yields (with ∣Γ33∣ = 3! × 3! = 36) that the
number of equisets of vertices is just 2.
From Theorem 0.8 we learn that one of the
classes consists of the 36 non-flat states,
which stay fixed only under the identity,

and the other one of the 6 flat distributions
of balls, each of which is fixed under the ac-
tion of 6 group elements. We therefore only
have to consider two representatives, 12 ∣3 ∣
and 1 ∣2 ∣3, say. They have degrees 3 and 6,
respectively, such that the statements re-
lating to degrees are obvious.

We now turn to the conclusions about
metric properties of L3

222. The only tedious
step is to determine all distances to other
vertices from the two prototype states,
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231||

31||2

||132

21|3|

|123|

||321

1|23|

|23|1

|3|21

2||31

1||32

1|3|2

2|3|1

32||1

132||

|1|32

||312

|3|12

|13|2

2|13|

12|3|

312||

32|1|

|231|

|31|2

3||12

|213|

12||3

2|31|

3|21|

3|1|2

13||2

213||

||213

2||13

2|1|3

|21|3

|321|

23|1|

13|2|

|2|13

|1|23

123||

23||1

3|2|1

3|12|

|12|3

1|2|3

1||23

||123

3||21

|312|

21||3

321||

|2|31

|32|1

1|32|

31|2|

||2  13

|132|

Figure A.15: The mixed graph
Ð→
H3

3 and extra edges of O3
3 on the torus

i.e. to span shortest-path trees rooted in
12 ∣3 ∣ and 1 ∣2 ∣3. This can be done, e.g.,
by recourse to Figure A.14.

In Figure A.16 all distances from the
respective start vertices are indicated. It
turns out that the height of both trees is
5, which proves the statements about ec-
centricities and diameter, the latter being

attained, e.g. for the task 1 ∣2 ∣3 → 3 ∣ ∣12.
(From the Handshaking lemma it also fol-
lows that ∥L3

222∥ = 72.) Moreover, the sums
of lengths of all shortest paths in the trees
are 140 and 133, respectively. This leads to
the total sum of 36 ⋅140+6 ⋅133 = 5838 and
the average distance of 139

41
.
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123 231 312 132 321 213

123

231

312

132

321

213

π

χ

V

Table A.1: Fixed point sets for symmetries on V (L3
222)

Finally, in order to arrange tasks into
equisets, we have to let the group act on
the set V (L3

222)×̇V (L3

222). A task (s, t) can
only be invariant under the action of a
group element g, if both s and t are in the
fixed point set of g. This means that there
are just 2 fixed points for each combina-
tion of reflections and 6 for the combina-
tions of non-trivial rotations. That makes
a total of 1722+4 ⋅6+9 ⋅2 = 1764, such that
Corollary 0.9 tells us that there are 49 eq-
uisets of tasks. Moreover, Table A.1 shows
that tasks being fixed by a non-trivial rota-
tion are fixed by another one, whereas those
fixed by a reflection are not invariant under
any other non-trivial group element. There-
fore, the former constitute the only equiset
of size 12 the latter the only one of size
18. Representatives of these two classes are,
e.g., 1 ∣2 ∣3 → 2 ∣3 ∣1 and 1 ∣2 ∣3 → 2 ∣1 ∣3, re-
spectively. All other task are invariant only
under the identity, such that Theorem 0.8

puts them into equisets of size 36.

Chapter 8

Exercise 8.1 The number of moves of disc
d is 2 ⋅ 3n−d.

Exercise 8.2 Hint: Every move changes the
parity of the number of discs on peg 1.

Exercise 8.3 It suffices to prove that the
tower of n discs can be moved from peg 0
to peg 1. Design an algorithm for this task
and prove its correctness by induction.

Exercise 8.4 First show by induction that

∣0 [n]Ð→ 2∣ = ∣2 [n]Ð→ 1∣ and ∣1 [n]Ð→ 2∣ = ∣2 [n]Ð→ 0∣.
Setting an = ∣0 [n]Ð→ 1∣, bn = ∣0 [n]Ð→ 2∣,
cn = ∣1 [n]Ð→ 0∣, and dn = ∣1 [n]Ð→ 2∣, we read

Appendix A. Hints and Solutions to Exercises
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1|2|3

1

1

1

1

1

1

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

4

4

4

4

4

4

4

4

4

4

4

5

5

5

5

4

5

5

5

5

6 x 1 =   6

6 x 2 = 12

9 x 3 = 27

12 x 4 = 48

8 x 5 = 40

13341

3 x 1 =   3

7 x 2 = 14

10 x 3 = 30

12 x 4 = 48

9 x 5 = 45

14041

12|3|

1

1

1

2

2

2

2

2

2

2

33

3

3

3

3

3

3

4

4

4

4

4

4

4

4

3

4

4

4

5

5

5

5

5

5

5

5

5

3
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Figure A.16: L3
222 with distances from vertex 1 ∣2 ∣3 (green) and from vertex 12 ∣3∣

(blue)

from Algorithm 23:

an = 2bn−1 + 1,
bn = 2bn−1 + dn−1 + 2,
cn = 2dn−1 + 1,
dn = bn−1 + cn−1 + 1 .

The initial conditions are left to the reader.

Exercise 8.5 This is done as in Exercise 8.4.

Now, with an = ∣0 [n]Ð→ 2∣, ∣0 [n]Ð→ 1∣ = bn =

∣1 [n]Ð→ 2∣, cn = ∣2 [n]Ð→ 0∣, and ∣1 [n]Ð→ 0∣ = dn =
∣2 [n]Ð→ 1∣, we get:

an = 2an−1 + cn−1 + 2,
bn = an−1 + dn−1 + 1,
cn = 2dn−1 + 1,
dn = bn−1 + cn−1 + 1 .

The base of the asymptotic exponential be-
havior of these sequences is then the great-
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est (with respect to absolute value) solution
of λ3−λ2−4λ+2 = 0, which is approximately
2.342923.

Exercise 8.6 The first assertion follows from
the definitions of legal moves in TH and in

TH(
Ð→
C 3), for the second use induction on

the number of discs.

Exercise 8.7 Hint: Consider the states of
the puzzle as the points of the lattice [p]0×
[p]0. Optimal solutions of the puzzle corre-
spond to paths in the grid between (0,0)
and (p−1, p−1) that meet a diagonal point
(i, i) for precisely one i ∈ [p− 2]. Then take
a closer look at the shape of these paths.
(For details, see [174, p. 375f].)

Exercise 8.8 Let an be the number of
moves. It is easy to see that a0 = 0 and

an = 3an−1 + 2 for n ≥ 1. This leads to
an = 3n − 1. To get a solution using only
18 moves (instead of the 26 needed by the
algorithm) use the fact that when disc 3 is
moved from peg 0 to peg 1, discs 1 and 2
need not be both on peg 2; and similarly in
the later stages.

Exercise 8.9 Hint: It is easy to see that for
any vertex v of a moderately enhanced cy-
cle D, the digraph D − v cannot contain a
strong subgraph on at least three vertices.
For the converse suppose that D has no
vertex w such that the digraph D −w con-
tains a strong subgraph on at least three
vertices and consider two cases. The first
is that there are vertices u, v ∈ V (D) such
that (u, v) ∈ A(D) and (v,u) ∉ A(D), the
second being that this is not so.

Appendix A. Hints and Solutions to Exercises



Glossary

adjacency matrix of a graph A matrix given by

V (G) × V (G) → B, (u, v) ↦ ({u, v} ∈ E(G)) .
binary tree A rooted tree where every vertex has at most two adjacent vertices

which are further away from the root.

bit Short for binary digit.

bridge Edge whose deletion increases the number of connected components of
a graph. Also called cut-edge. In particular, edge whose deletion leaves a
connected graph disconnected.

center The set of those vertices of a graph whose eccentricities are equal to its
radius.

(vertex) chromatic number The minimum number of colors needed for a coloring
of vertices of a graph such that adjacent vertices receive different colors.

circuit Another word for a closed trail.

clique in a graph A complete subgraph.

complete graph A graph G whose edge set is E(G) = (V (G)
2
).

connected graph A finite or an infinite graph is connected if any two of its vertices
are joined by a finite path.

connectivity The connectivity of a graph G is the smallest size of a vertex set X

such that G −X is disconnected or has only one vertex.

cycle in a graph A finite path in a graph to which an edge joining its end vertices
is added.

cyclic permutation A permutation which moves the elements of a subset cyclically:
c1 ↦ c2 ↦ ⋯ ↦ ck ↦ c1 and leaves the others fixed; its length is k, and it is
denoted by (c1 c2 . . . ck).

degree The number of incident edges of a vertex v is its degree deg(v). A loop
adds 2 to the degree of a vertex.

A. M. Hinz et al., The Tower of Hanoi – Myths and Maths,
DOI: 10.1007/978-3-0348-0237-6, � Springer Basel 2013
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derangement A fixed-point-free permutation.

diameter of a graph The maximum over all distances in a connected graph.

digraph Ordered pair D = (V (D),A(D)) consisting of the set of vertices V (D)
and the set of arcs A(D) which are ordered pairs of vertices.

eccentricity of a vertex The maximum distance between a given vertex and all
the other vertices.

edge coloring A function from the edge set of a graph to a set of colors such that
any pair of incident edges receives different colors.

eulerian circuit A circuit in a graph G which contains all edges of G.

eulerian graph A graph which contains an eulerian circuit.

eulerian trail A trail in a graph G which contains all edges of G.

forest A graph F without cycles. It has ∣F ∣−∥F ∥ components [327, Theorem I.35].

geodesic A shortest path between two vertices of a graph G is called a geodesic
in G.

graph Ordered pair G = (V (G),E(G)) consisting of the set of vertices V (G) and
the set of edges E(G) which are unordered pairs of vertices.

graph distance The minimum length of the paths between two vertices of a con-
nected graph.

hamiltonian cycle A cycle containing all the vertices of a given graph.

hamiltonian path A path containing all the vertices of a given graph.

Handshaking lemma Asserts that the sum of the degrees in a graph is twice the
number of its edges.

height of a rooted tree The largest distance from the root.

inclusion-exclusion principle For two finite sets X and Y , ∣X∪Y ∣ = ∣X ∣+∣Y ∣−∣X∩Y ∣.
The principle has an extension to any finite family of finite sets.

independence number The maximum size of a subset of vertices of a graph which
are pairwise non-adjacent.

Kuratowski’s theorem Asserts that a graph is planar if and only if it does not
contain a subgraph that is a subdivision of K3,3 or K5.

length of a path The number of its edges.

loop An edge in a multigraph whose end-vertices are identical, i.e. a singleton.

matching A set of pairwise non-adjacent edges of a graph.

Glossary
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mixed graph Triple G = (V (G),E(G),A(G)) consisting of the set of vertices
V (G), the set of edges E(G) which are unordered pairs of vertices, and
the set of arcs A(G) which are ordered pairs of vertices.

multigraph Ordered pair G = (V (G), F (G)) consisting of the set of vertices V (G)
and the family F (G) of edges which are singletons or unordered pairs of
vertices.

natural number A non-negative integer. The set of natural numbers is denoted by
N0, while N stands for the set of positive integers.

order of a graph The number ∣V (G)∣ of the vertices of a graph G; abbreviated
∣G∣.

partition of a set P ⊂ 2V is a partition of the set V , if ∅ ∉ P , V = ⋃P , and
∀{X,Y } ∈ (P

2
) ∶ X ∩ Y = ∅.

path graph A graph with one vertex and no edge or a connected graph with two
vertices of degree 1 and the other vertices of degree 2.

path in a digraph A subdigraph with vertex set {xi ∣ i ∈ [` + 1]0} of size `+ 1 and
arc set {(xi−1, xi) ∣ i ∈ [`]}, where ` ∈ N0 is its length, x0 its start vertex and
x` its end vertex.

path in a (multi)graph A subgraph isomorphic to a path graph.

pendant vertex A vertex of a graph of degree 1.

perfect matching A matching M of a graph G such that every vertex of G is
saturated, i.e. is incident with (precisely) one element of M .

periphery The set of those vertices of a graph whose eccentricities are equal to its
diameter.

permutation A bijective mapping from a finite set to itself.

pigeonhole principle There is no injective mapping from [n] to [m] if N0 ∋ m <
n ∈ N (as can be proved by induction on m).

pit Short for p-ary digit, the entities of the number system with base p; cf. bit
and tit.

radius of a graph The minimum over all eccentricities of vertices in a connected
graph.

regular graph Graph all of whose vertices have the same degree. Called k-regular
if their degree is k.

root, rooted tree A rooted tree is a tree one of whose vertices has been specified
as its root.

semi-eulerian graph A graph which contains an eulerian trail.
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singleton A set with precisely one element.

size of a graph The number ∣E(G)∣ of the edges of a graph G; abbreviated ∥G∥.
1-skeleton of a polyhedron The graph whose vertex set is the set of vertices of the

polyhedron and where two vertices form an edge if the corresponding vertices
on the polyhedron are the endpoints of an edge.

spanning subgraph A subgraph with the same vertex set as its host graph.

Stirling numbers of the second kind The number of partitions of an n-set into k

nonempty parts; denoted by {n
k
}.

subdivision A subdivision of a graph is a graph obtained from it by successively
replacing an edge {x, y} ∈ E by two edges {x, z} and {z, y} with a new vertex
z.

suffix of a sequence (finite or not) (xk)k≥K is a subsequence (xk)k≥L for some
L ≥K.

tit Short for ternary digit.

total coloring A vertex coloring together with an edge coloring such that each
edge receives a color different from the colors of its end vertices.

total eccentricity The sum of eccentricities ε(v) over all vertices v of a (connected)
graph.

(closed) trail A (closed) walk containing no repeating edge.

transposition A cyclic permutation of length 2.

tree A connected graph without cycles, i.e. a connected forest.

vertex coloring A function from the vertex set of a graph to a set of colors such
that any pair of adjacent vertices receives different colors.

(closed) walk A walk is a finite sequence of vertices such that neighbors in the
sequence are adjacent in the graph. It is closed if the first and last member of
the sequence coincide. In a multigraph it might be necessary to specify which
edge is joining two vertices. Also the subgraph induced by these vertices and
edges.

Glossary
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Halāyudha, 13, 19
Halder, A., 225
Halphén, G., 19
Hamilton, W. R., 26–28
Hayes, B., 80
Hayes, P. J., 46
Heawood, P. J., 32
Heffter, L., 32
Hering, H., 49, 242, 250
Hierholzer, C., 24
Hinz, A. M., 47, 76, 120, 132, 140,

144, 158, 179, 195, 196, 209,
232, 236

Hirayama, Y., 92, 219
Hoseiny Farahabady, M., 159
Hunter, W. S., 48

Imani, N., 159

Jacobsthal, E., 110
Jakovac, M., 158
Jordan, C., 31

Kauffman, L. H., 66
Keister, W., 65
Kirchhoff, G. R., 101
Klahr, D., 48
Klavžar, S., 49, 149, 155, 156, 158,

186, 187, 209, 259
Klein, C. S., 132, 138, 140
Knuth, D., 49, 186
Köhler, T., 158
Korf, R. E., 167, 175, 179, 181, 182
Kummer, E. E., 19

Lanier, L. M., 48
Legendre, A. M., 61
Leibniz, G., 5
Leiss, E. L., 244, 258
Leonardo Pisano, 11
Li, C.-K., 98
Liang, W.-Y., 159
Liang, Z., 263
Lin, C.-H., 156
Lindley, E. H., 48
Lindquist, N. F., 93
Lipscomb, S. L., 161, 163
Liu, J.-J., 156
de Longchamps, G., 43
Lu, X., 45, 47, 93, 187
Lucas, É., vii, ix, 3–6, 9, 12, 19, 20,

56, 61, 78, 79, 113, 131, 132,
211–213, 263

Lunnon, F., 215, 217

Majumdar, A. A. K., 225
Mandelbrot, B. B, 19, 21
Marinoni, G., 23

Name Index



Name Index 321

Matsuura, A., 172, 254
Meier, M., 182, 202
Mersenne, M., 11, 12
Milutinović, U., 49, 149, 155, 186,

187, 209, 259
Minsker, S., 132, 138, 140, 218, 219,

221
Möbius, A. F., 31
Mohar, B., 156
Mollard, M., 156
Montucla, J. F., 11

Neale, R., 221
Nelson, I., 98
Nelson, R. B., 255, 256
Newell, A., 49
Ng, K.-L., 159
Noland, H., 91
Nurlybaev, A. N., 164

Obara, S., 92, 219
Olive, R., 43, 74, 76, 78, 79
Owens, F. W., 255, 256
Ozanam, J., 3

Pacioli, L., 4, 41
Parisse, D., 123, 151, 158, 195, 196,

209
Park, S. E., 197
de Parville, H., 1, 2, 9, 43
Pascal, B., 13
Perkins, E. A., 121
Peterson, J., 48
Petr, C., 155, 186, 209, 259
Piaget, J., 48
Poole, D. G., 93, 121, 222–225
Przytycki, J. H., 67

Randall, J., 76
Rasmussen, P., 41, 56, 60
Rémond de Montmort, P., 15
Ringel, G., 32
Romik, D., 113, 124, 125, 127, 144,

147

Sainte-Laguë, A., 63
Sanges, C., 159
Sapir, A., 245, 248–250, 255–257
Sarbazi-Azad, H., 159
Sartorius von Waltershausen, W., 35
Scarioni, F., 90
Schief, A., 120, 144
Schmid, R. S., 195
Schoute, P. H., 2, 43, 82, 129
Schuh, F., 2
Schützenberger, M., 12
Scorer, R. S., 44, 94, 242, 256
Shallice, T., x, 48, 227
Shallit, J., 76
Shen, J., 190
Sierpiński, W., 21
Sikora, A. S., 67
Simon, H. A., 48, 49
Smith, C. A. B., 44, 94, 242, 256
Soifer, A., 33
Solomon, N., 259
Solomon, S., 225, 226, 255, 259
Speranza, M. G., 90
Spitzer, A., 236
Stern, M., 17, 19
Stewart, B. M., 46, 166, 167, 177,

184, 188
Stewart, I., vii, 23, 119
Stierstorfer, Q., 195
Stockmeyer, P. K., 84, 196, 214, 215,

217, 250–252, 254–256, 259
Strohhäcker, S., 179, 182
Sturm, C., 43
Šunić, Z., 127, 198
Szegedy, M., 189, 190

Teufl, E., 101
Tian, B., 225
Tunstall, J. R., 231
Tutte, W. T., 101

Urbiha, I., 123

Vizing, V. G., 33



322 Name Index

Wagner, S., 101
Wallis, J., 41, 54, 56
Walsh, T. R., 250
Wang, L., 225
Wang, Y.-L., 156
Ward, G., 227
Weil, A., 39
Wiesenberger, H. L., 60, 154
Wilf, H. S., 124
Wilson, R. J., 23
Wolfram, S., 19
Wood, D., 44, 45, 47, 218, 222
Woodin, W. H., 45, 263
Wu, S., 101

Yang, W.-S., 101
Yen, W. C.-K., 156
Youngs, J. W., 32

van Zanten, A. J., 91, 219, 221, 226
Zhang, W., 41, 56
Zhang, Z., 101
Zhu, X. Z., 56, 60
Zhuge Liang, 4



Subject Index

abelian square, 69
absorbing Markov chain, 146
absorbing state, 146
accelerated Chinese rings (ACR), 56
adjacency matrix, 101, 293
admissible arrangement, 77
admissible state, 77
algorithm

Fleury’s, 24
greedy, 33, 64
human, 113, 129
Olive’s, 74

Allouche-Sapir conjecture, 262
alphabet, 63
alternating group, 27
ape, 155
Argentine ants, 50
Arithmetical triangle, 13, 16
arrangement, 50

admissible, 77
association, 36
atom, 17
automaton

cellular, 19
Gros code, 58
P1-, 82
Romik’s, 125, 146
Romik’s H3-to-S3, 144

automorphism group, 40, 99
average distance, 60
average eccentricity, 59

normalized, 112

ba gua 八卦, 5

baguenaudier, 4, 58
basic double task, 127
benzenoid hydrocarbon, 117
best buffer (disc), 137
binary carry sequence, 61
binary logarithm, 123
binary tree, 94, 293
Binet’s formula, 265
binomial theorem, 15
bipartite graph, 33
bit, 5, 293
Black and white Tower of Hanoi

(BWTH), 215
black sheep formula, 15
Bottleneck Tower of Hanoi (BTH),

222
boxer rule, 106, 153, 188
breadth-first search (BFS), 179, 267
bridge, 25, 293
Brocot sequence, 18, 110
Burnside’s lemma, 40, 100

cardinality, 38
careful brothers problem, 34
Catalan number, 259
Catalan permutation, 49
Cayley table, 84
ceiling function, 14
cellular automaton, 19
center, 130, 184, 293
central peg, 251
characteristic polynomial, 104
Chinese rings (CR), 3, 53

accelerated, 56
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Chinese rings graph, 55
Chinese rings network, 68
Chinese string (CS), 66
chromatic index, 33, 195
chromatic number, 33, 158, 195, 293
circuit, 23, 293

eulerian, 23, 294
Class 1 graph, 196
Class 2 graph, 196
clique, 150, 293

p-, 150
clique number, 33
closed trail, 23, 296
closed walk, 296
code

Gray, 58, 63, 80, 90, 243, 271
(p,n)-Gray, 243
Gros, 58
perfect, 58, 69, 97–99, 155
reflected binary, 59

codeword, 69
coloring

of edges, 33, 56, 294
total, 33, 296
vertex, 33, 296

combination, 14
combinatorial number, 15
complete bipartite graph, 33
complete digraph, 242
complete graph, 31, 293
complexity class NP, 30
complexity class P, 26
complexity of graph, 101
conjecture

Allouche-Sapir, 262
Double task, 262
Frame-Stewart, 46, 167, 175,

178, 262
Graceful tree, 33
Guy’s, 32, 158, 261
Köhler’s, 261
Korf-Felner, 262
LDM pattern, 262
Monotonicity, 262

Non-subtower, 262
Rainbow, 262
Ring, 67, 261
Stockmeyer’s, 254, 262
Strong Frame-Stewart, 187, 262
Total coloring, 33, 197

connected graph, 25, 58, 293
connectivity, 97, 158, 194, 293
countable, 38
crossing number, 32, 157
cube

n-, 69
Rubik’s, 100

curve
dragon, 62
generalized Sierpiński, 163
triangular Sierpiński, 160

cycle, 54, 293
directed, 244
hamiltonian, 26, 69, 294
moderately enhanced, 257

cycle of permutation, 28
cyclic permutation, 28, 293
Cyclic Tower of Hanoi, 244

degree, 23, 293
maximum, 33
minimum, 192

degree balanced, 228
delayed duplicate detection (DDD),

179
derangement, 17, 294
Devil’s peg, 165
diameter, 56, 294
digraph, 132, 294

complete, 242
strong, 244

directed cycle, 244
discrepancy, 222
distance, 58

average, 60
graph, 58, 294

distance layered graph, 203
divide-and-conquer, 46

Subject Index
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divine rule, 2
dodecahedral graph, 27
dominating set, 99
domination number, 99, 155
Domoryad’s task, 129
double P2 problem, 127
Double task conjecture, 262
dragon curve, 62
dual graph, 30
Dunkel’s lemma, 178

eccentricity, 59, 294
average, 59
total, 59, 296

edge chromatic number, 33, 158
edge coloring, 33, 56, 294
equipotent, 38
equivalence, 37
equivalence class, equiset, 37
equivalent elements, 37
equivalent states, 183
Euler’s number, 17
Euler’s phi function, 19, 110
Euler’s polyhedral formula, 31
eulerian circuit, 23, 294
eulerian graph, 130, 294
eulerian trail, 23, 294
even permutation, 27
even vertex, 25
excess, 36
excess function, 182
exchange number, 66
Exchanging discs TH (EDTH), 214
exponential Tower of Hanoi, 257
extreme vertex, 144, 152

factor set, 40
factorial, 50
falling power, 209
Fibonacci number, 12, 122, 123, 129
Fibonacci sequence, 11, 117
fixed point, 17
fixed point set, 40
flat state, 48, 236, 281

Fleury’s algorithm, 24
floor function, 14
forest, 101, 294
formula

Binet’s, 265
black sheep, 15
Euler’s polyhedral, 31

Four-in-a-row Tower of Hanoi, 254
fractal, 23
Frame number, 166, 185
Frame-Stewart conjecture, 46, 167,

175, 178, 262
Frame-Stewart number, 166, 170,

186, 187
Frame-Stewart-type strategy, 252
frontier search, 179
function

ceiling, 14
Euler’s phi, 19, 110
excess, 182
floor, 14
ruler, 61

fundamental matrix, 147
Fundamental theorem of recursion,

265

game
Icosian, 26
solitaire, 211
Tetralogic, 261
Trilogic, 261

Game of encounter, 15
general Sierpiński graph, 149
generalized Frame-Stewart number,

254
generalized Sierpiński curve, 163
genus, genera, 32, 157
geodesic, 106, 294
Golden section, 12, 50
Graceful tree conjecture, 33
graph, 23, 294

bipartite, 33
Chinese rings, 55
Class 1, 196
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Class 2, 196
complete, 31, 293
complete bipartite, 33
connected, 25, 58, 293
distance layered, 203
dodecahedral, 27
dual, 30
eulerian, 130, 294
general Sierpiński, 149
hamiltonian, 26
Hamming, 191, 194
Hanoi, 44, 45, 94, 179, 190, 259
iterated complete, 159
London, 231, 232
mixed, 132, 295
Oxford, 232
pancyclic, 159
Pascal, 121
path, 54, 295
planar, 31, 156
regular, 28, 295
Schreier, 198
semi-eulerian, 130, 295
Sierpiński, 44, 49, 121
Sierpiński with base 3, 141
Sierpiński-like, 121
Sisyphean Hanoi, 104, 120, 122
Sisyphean Sierpiński, 142
state, 44
toroidal, 235
underlying, 234

graph distance, 58, 294
Gray code, 58, 63, 80, 90, 243, 271
(p,n)-, 243

greedy algorithm, 33, 64
Gros code, 58
Gros code automaton, 58
Gros sequence, 60, 61, 74, 271
group

alternating, 27
automorphism, 40, 99
Hanoi Towers, 127, 198
Icosian, 27
symmetric, 27

group action, 39
Guy’s conjecture, 32, 158, 261

hamiltonian cycle, 26, 69, 294
hamiltonian graph, 26
hamiltonian path, 26, 294
Hamming graph, 191, 194
Handshaking lemma, 26, 192, 294
Hanoi graph, 44, 45, 94, 179, 190, 259
Hanoi rainbow problem (THR), 221
Hanoi Towers group, 127, 198
Hausdorff dimension, 23
heat map, 181
height, 94, 294
height of peg, 231
hexagram, 5
Holländischer Baum, 24
human algorithm, 113, 129
Hutchinson operator, 160
hyperbinary representation, 123

icosagonal, 27
Icosian calculus, 27
Icosian game, 26
Icosian group, 27
idle peg, 74, 89
imperial ruler, 61
inclusion-exclusion principle, 16, 294
independence number, 158, 294
index, 36

chromatic, 33, 195
Wiener, 59, 118

infinite face, 31
intercalation, 17
irregular state, 131
isomorphic, 39
isomorphy of graphs, 36
isomorphy of groups, 39
iso-problems, 100
iterated complete graph, 159
iterated function system, 160
Iverson’s convention, 20

Jacobsthal number, 111, 123

Subject Index
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Jacobsthal sequence, 56, 110
Jordan curve theorem, 31

Kekulé structure, 117
Kirchhoff matrix, 101
Köhler’s conjecture, 261
Königsberg bridges problem, 23
Korf phenomenon, 182
Korf-Felner conjecture, 262
Kuratowski’s theorem, 33, 294

largest disc move (LDM), 112, 206
latin square, 84
LDM pattern conjecture, 262
legal move, 72
lemma

Burnside’s, 40, 100
Dunkel’s, 178
Handshaking, 26, 192, 294

length, 29, 294
Linear Tower of Hanoi, 242, 251, 255
Linear Tower of Hanoi on p pegs, 251
Linear Twin Hanoi, 221
Lipscomb space, 161
Little Tower of Antwerpen (LTA),

219
Locking disc puzzle, 65
London graph, 231, 232
loop, 268, 294
Lucas correspondence, 121
Lucas number, 12, 111
Lucas sequence, 12
Lucas’s second problem, 131, 235,

262

Markov chain, 146
absorbing, 146

matching, 101, 294
perfect, 130, 295

matrix
adjacency, 101, 293
fundamental, 147
Kirchhoff, 101
transition, 146

Matrix-Tree theorem, 101
maximum degree, 33
measure, 23
mediant, 18
mediation, 18
Mersenne number, 11
Mersenne sequence, 11
Meru-Prastāra, 13, 20
minimum degree, 192
missionaries and cannibals problem

(MC), 268
mixed graph, 132, 295
moderately enhanced cycle, 257
monotonicity condition, 185
Monotonicity conjecture, 262
Monsters and Globes, 50
morphic sequence, 248
most economical, 175
Mount Meru, 13
move

largest disc, 112, 206
legal, 72
type 0, 53
type 1, 53

multigraph, 23, 295

natural number, 11, 295
network

Chinese rings, 68
Tower of Hanoi, 67
WK-recursive, 159

Noland’s problem, 93, 220
non-repetitive sequence, 63
Non-subtower conjecture, 262
normalized average eccentricity, 112
NP-complete, 30
number

Catalan, 259
chromatic, 33, 158, 195, 293
clique, 33
combinatorial, 15
crossing, 32, 157
domination, 99, 155
edge chromatic, 33, 158
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Euler’s, 17
exchange, 66
Fibonacci, 12, 122, 123, 129
Frame, 166, 185
Frame-Stewart, 166, 170, 186,

187
generalized Frame-Stewart, 254
independence, 158, 294
Jacobsthal, 111, 123
Lucas, 12, 111
Mersenne, 11
natural, 11, 295
partition, 167
3-smooth, 172, 252
Stern, 123
Stirling of the second kind, 192,

296
tetrahedral, 46, 187
total chromatic, 33, 158, 196
triangular, 35, 170

odd vertex, 25
Olive sequence, 76, 78, 104
Olive’s algorithm, 74
Olympic Tower of London, 232
orbit, 40
Orbit-Stabilizer theorem, 40, 99
order, 32, 295
Oxford graph, 232

P1-automaton, 82
P2 decision problem, 113, 145
pancyclic graph, 159
paper-folding sequence, 62
partition, 37, 295

h-, 238
strict, 38
trivial, 38

partition number, 167
Pascal graph, 121
Pascal’s triangle, 121
path graph, 54, 295
path in digraph, 134, 295
path in graph, 295

hamiltonian, 26, 294
Pattern-matching puzzle, 65
peg

central, 251
Devil’s, 165
idle, 74, 89
special, 137

pendant vertex, 54, 295
perfect code, 58, 69, 97–99, 155
perfect matching, 130, 295
perfect state, 71, 165
period-doubling sequence, 79
Peripheral phenomenon, 184
periphery, 182, 184, 275, 295
permutation, 50, 295

Catalan, 49
cyclic, 28, 293
even, 27

phenomenon
Korf, 182
Peripheral, 184

pigeonhole principle, 50, 112, 295
p-in-a-row Tower of Hanoi, 251
pit, 151, 295
planar graph, 31, 156
presumed minimal solution, 47, 167
principle

inclusion-exclusion, 16, 294
pigeonhole, 50, 112, 295

problem
careful brothers, 34
double P2, 127
Hanoi rainbow, 221
Königsberg bridges, 23
Lucas’s second, 131, 235, 262
missionaries and cannibals, 268
Noland’s, 93, 220
P2 decision, 113, 145
rabbit, 11
river crossing, 34
Triple-Tower, 221
Twin-Tower, 219
type P0, 71, 242
type P1, 82, 86, 212

Subject Index
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type P2, 105, 212
type P3, 132
type P4, 132
water, gas and electricity, 33
wolf, goat and cabbage, 34

problem isomorph, 50, 65
prosody, 13
Prouhet-Thue-Morse sequence, 79,

105
puzzle

Locking disc, 65
Pattern-matching, 65
The Reve’s, 46, 165, 251

quasigroup, 84
Steiner, 84

quaternary, 165
quotient set, 37

rabbit problem, 11
radius, 130, 295
Rainbow conjecture, 262
recurrence, 11
recursive, 10
reflected binary code, 59
regular graph, 28, 295
regular state, 71, 165
regularization, 132
representative, 38
right direction, 82
Ring conjecture, 67, 261
river crossing problem, 34
Romik’s automaton, 125, 146
Romik’s H3-to-S3 automaton, 144
root, 94, 179, 267, 295
rooted tree, 295
Rubik’s cube, 100
rule

boxer, 106, 153, 188
divine, 2

ruler function, 61

Schreier graph, 198
search

breadth-first, 179, 267
frontier, 179

seed, 17
self-similar, 23
semi-eulerian graph, 130, 295
semi-perfect state, 134
sequence

binary carry, 61
Brocot, 18, 110
Fibonacci, 11, 117
Gros, 60, 61, 74, 271
Jacobsthal, 56, 110
Lucas, 12
Mersenne, 11
morphic, 248
non-repetitive, 63
Olive, 76, 78, 104
paper-folding, 62
period-doubling, 79
Prouhet-Thue-Morse, 79, 105
3-smooth, 172, 252
square-free, 63, 75
Stern’s diatomic, 18, 115, 121
strongly square-free, 69, 76
Thue, 79, 105

set
dominating, 99
factor, 40
fixed point, 40
quotient, 37

Sierpiński curve
generalized, 163
triangular, 160

Sierpiński gasket, 21
Sierpiński graph, 44, 49, 121

Sisyphean, 142
Sierpiński graph with base 3, 141
Sierpiński triangle (ST), 23, 101, 119,

160
Sierpiński-like graph, 121
sign manual of Muhammad, 25
singleton, 294, 296
Sinner’s Tower of Hanoi, 225
Sisyphean Hanoi graph, 104, 120, 122
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Sisyphean Sierpiński graph, 142
size of graph, 25, 296
1-skeleton, 27, 296
3-smooth number, 172, 252
3-smooth sequence, 172, 252
solitaire game, 211
solution

presumed minimal, 167
subtower, 175

solvable double P2 task, 127
solvable Tower of Hanoi, 242
spanning subgraph, 101, 191, 296
spanning tree, 101, 267
special case, 135
special peg, 137
spreadsheet, 80
square, 64

abelian, 69
latin, 84

square-free sequence, 63, 75
stabilizer, 40
standard, 37
standard case, 135
Star Tower of Hanoi, 251
state, 131

absorbing, 146
admissible, 77
flat, 48, 236, 281
irregular, 131
perfect, 71, 165
regular, 71, 165
semi-perfect, 134

state graph, 44
Steiner quasigroup, 84
Stern number, 123
Stern’s diatomic array, 17, 110
Stern’s diatomic sequence, 18, 115,

121
Stirling number of the second kind,

192, 296
Stockmeyer’s conjecture, 254, 262
strict partition, 38
strong digraph, 244

Strong Frame-Stewart conjecture,
262

strongly square-free sequence, 69, 76
sub-exponential Tower of Hanoi, 257
subdiagonal, 122
subdivision, 33, 296
subfactorial, 17, 51
subtower, 168, 172
subtower solution, 175
suffix, 127, 296
superdisc, 172, 209
Switching Tower of Hanoi (STH), 49,

145, 149
symmetric group, 27

Taegeukgi, 5
task

basic double, 127
Domoryad’s, 129
solvable double P2, 127

tetrahedral number, 46, 187
Tetralogic game, 261
The Reve’s puzzle, 46, 165, 251
theorem

binomial, 15
Fundamental of recursion, 265
Jordan curve, 31
Kuratowski’s, 33, 294
Matrix-Tree, 101
Orbit-Stabilizer, 40, 99
Vizing’s, 33, 196

Three-in-a-row TH, 221, 242
Thue sequence, 79, 105
tit, 85, 296
Toeplitz transform, 78
toroidal graph, 235
total chromatic number, 33, 158, 196
total coloring, 33, 296
Total coloring conjecture, 33, 197
total eccentricity, 59, 296
Tower of Antwerpen (TA), 218

Little, 219
Tower of Brahma, 1
Tower of Hanoi (TH), vii, 2, 71

187,
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Black and white, 215
Bottleneck, 222
Cyclic, 244
Exchanging discs, 214
exponential, 257
Four-in-a-row, 254
Linear, 242, 251, 255
Linear on p pegs, 251
p-in-a-row, 251
Sinner’s, 225
solvable, 242
Star, 251
sub-exponential, 257
Switching, 49, 145, 149
Three-in-a-row, 221, 242
weakly solvable, 258

Tower of Hanoi network, 67
Tower of London (TL), 49, 227

Olympic, 232
Tunstall’s, 232

Tower of Oxford, 227
Tower of Toronto, 50
trail, 23, 296

closed, 23, 296
eulerian, 23, 294

transition matrix, 146
transitive, 37
transposition, 27, 296
tree, 94, 296

binary, 94, 293
rooted, 295
spanning, 101, 267

triangle
Arithmetical, 13, 16
Pascal’s, 121
Sierpiński, 23, 101, 119, 160

triangular number, 35, 170
triangular Sierpiński curve, 160
trigram, 5
Trilogic game, 261
Triple-Tower problem (TTT), 221
trivial partition, 38
Tunstall’s Tower of London, 232
Twin-Tower problem (TT), 219

type
0 move, 53
1 move, 53
P0 problem, 71, 242
P1 problem, 82, 86, 212
P2 problem, 105, 212
P3 problem, 132
P4 problem, 132

underlying graph, 234

vertex
even, 25
extreme, 144, 152
odd, 25
pendant, 54, 295

vertex coloring, 33, 296
Vizing’s theorem, 33, 196

walk, 28, 296
closed, 296

water, gas and electricity problem, 33
weakly solvable Tower of Hanoi, 258
Wiener index, 59, 118
WK-recursive network, 159
wolf, goat and cabbage problem, 34

yang 阳, 5
yi jing 易经, 5
yin 阴, 5



Symbol Index

α(n) – the first vertex of Rn, 54
α(G) – independence number of

graph G, 158
β – Brocot sequence, 18
γ(G) – domination number of graph

G, 99
δ(G) – minimum degree of G, 192
∆(G) – maximum degree of G, 33
∆ν – triangular numbers, 35
ε(v) – eccentricity of vertex v, 59
κ(G) – connectivity of graph G, 97
Σ(3) – triangular Sierpiński curve,

160
τ(G) – complexity of graph G, 101
ϕ – Euler’s phi function, 19
χ(G) – chromatic number of graph

G, 33
χ′(G) – chromatic index of graph G,

33
χ′′(G) – total chromatic number of

graph G, 33
ω(G) – clique number of graph G, 33
ω(n) – the last vertex of Rn, 54

Altn – alternating group on n ele-
ments, 27

AT – Arithmetical triangle, 13
Aut(G) – set/group of automor-

phisms of a graph G, 40

B – set {0,1}, 54
b – Stern’s diatomic sequence, 115
B(N) = ∑N−1

ν=0 b(ν), 116

BTHt – Bottleneck TH with discrep-
ancy t, 222

C(G) – center of graph G, 183Ð→
C p – directed cycle on n vertices, 244
cr(G) – crossing number of graph G,

32

d(s, t) – distance between states s

and t, 88
d(s; j, k) = d(s, jn) − d(s, kn), 106
d(G) – average distance on graph G,

60
deg(v) – degree of vertex v, 24
diam(G) – diameter of graph G, 58

E(G) – total eccentricity of graph G,
59

ex(n) = ε(0n)−d(0n,3n) – the excess
function, 182

EX(n) = diam(Hn
4 ) − d(0n,3n), 182

f – paper-folding sequence, 63
F

n

4 (= FS
n

4 ) – Frame numbers for 4

pegs, 166, 174
Fk – Fibonacci numbers, 12
F

n

p – Frame numbers for p pegs, 185
FSn

3 (= Fn
3 ) – Frame-Stewart num-

bers for 3 pegs, 166
FSn

4 (= Fn
4 ) – Frame-Stewart num-

bers for 4 pegs, 166
FSn

p – Frame-Stewart numbers for p

pegs, 186
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g – Gros sequence, 60
g(G) – genus of graph G, 32
g̃ – binary carry sequence, 61

Hn
3 – Hanoi graphs on 3 pegs, 94Ð→

Hn
3 – Hanoi digraphs on 3 pegs, 132

H∞3 – Sisyphean Hanoi graph, 104
Hn

4 – Hanoi graph on 4 pegs, 179
Hn

p – Hanoi graph on p pegs, 190
H(p) – Hanoi Towers group, 198

Jk – Jacobsthal numbers, 110

Kp – complete graph on p vertices,
31←→

Kp – complete digraph on p vertices,
242

K(G) – Kirchhoff matrix of graph G,
101

lb(x) – binary logarithm of x, 123
L – state graph of the classical Tower

of London, 228
L3
231 – Olympic Tower of London, 232

L4
234 – state graph of Tunstall’s

Tower of London, 232
Ln
h – London graph, 232

Lk – Lucas numbers, 12←→
L 3 – digraph of the linear TH, 242

Mk – Mersenne numbers, 11
mod – the modulo operation, 20

N – set {1,2,3, . . .}, 11
N0 – set {0,1,2, . . .}, 10

o – Olive sequence, 76
On

p – Oxford graph, 232

P (G) – periphery of graph G, 184
P0 – problem perfect to perfect, 71
P1 – problem regular to perfect, 82
P2 – problem regular to regular, 105
P3 – problem irregular to perfect, 132

P4 – problem irregular to regular,
132

Pk – path graph on k vertices, 59

Q – set {0,1,2,3}, 165
q(n) – sum of bits of n, 61

rad(G) – radius of graph G, 130
Rn – state graph of the Chinese rings,

54

s(3) – 3-smooth sequence, 172
Sn
3 – Sierpiński graph (with base 3),

141
Sn
p – general Sierpiński graph, 149

ST – Sierpiński triangle, 23
ST4 – digraph of the Star Tower of

Hanoi, 251
ST n

4 – Star Tower of Hanoi numbers,
252

Symn – symmetric group on n ele-
ments, 27

Sym(T ) – symmetric group on T , 99

T – set {0,1,2}, 71
T
n - set of states with n discs, 132

TH(D) – TH with oriented disc
moves corresponding to di-
graph D, 242

W (G) – Wiener index of graph G, 59

Z – set {. . . ,−2,−1,0,1,2, . . .}, 67

zn(µ) – number of vertices s ∈ Hn
3

with d(s;k, j) = µ, 108
Xg – fixed point set of g, 39
3 = 2/3, 85
⊍ – union of pairwise disjoint sets, 72
A×̇A = {(a, b) ∈ A ×A ∣ a /= b}, 100
∣M ∣ – size of set M , 50
∣G∣ – order of graph G, 32
∣∣G∣∣ – size of graph G, 25
∣∣∣G∣∣∣ – number of faces of planar

graph G, 32
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(S) – binary truth value of state-
ment S, 20

(k
`
) – combinatorial number, 14
(K
`
) – set of all subsets of K of order

`, 15
{n
k
} – Stirling numbers of the second

kind, 199, 209, 296
bk – constant word, 54
nk – falling power, 209
MN – set of mappings from set N to

set M , 265
x ≈ y – x equivalent y, 37
[x] – equivalence class (equiset) of x,

37
⌊x⌋ – floor of x, 14
⌈x⌉ – ceiling of x, 14
X/Γ – factor set, 40
G ≅ G′ – isomorphic graphs, 39
k! – k factorial, 50
k¡ – k subfactorial, 51
[k] – set {1, . . . , k}, 50
[k]0 – set {0, . . . , k − 1}, 50
V /E = V / ≈ – quotient set, 37
Γx – stabilizer of x, 39
Γ.x – orbit of x, 40
a
b
⊕ c

d
– mediant of a

b
and c

d
, 18

i
◁
j – a binary operation on T , 82

s
◁
j – best first move vector, 93

f ↾ D – function f restricted to do-
main D, 266
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